Skip to main content

Physikalische Grundlagen

  • Chapter
  • First Online:
Strahlentherapie
  • 9418 Accesses

Zusammenfassung

Zweck einer Messgröße ist es, einen möglichst einfachen Zusammenhang zwischen physikalischer Messgröße und einer erwarteten Beobachtung herzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bortfeld T, Stein J, Schlegel W (1998) Inverse Planung und Bestrahlungstechniken mit intensitätsmodulierten Feldern. In: Richter J (Hrsg) Strahlenphysik für die Radioonkologie. Thieme, Stuttgart, S 121–129

    Google Scholar 

  • Boyer AL, Xing L and Xia P (1999) Beam shaping and intensity modulation. In: van Dyk J (ed.) The Modern Technology of Radiation Oncology. Medical Physics Publishing, S 437–479

    Google Scholar 

  • Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23:379–391

    Article  PubMed  CAS  Google Scholar 

  • Christ G, Dohm OS, Bruggmoser G, Schüle E (2001) The use of plane-parallel chambers without any cross-calibration. Phys Med Biol 47:N121–126

    Article  Google Scholar 

  • Chuang CF, Verhey LJ, Xia P (2002) Investigation of the use of MOSFET for clinical IMRT dosimetric verification. Med Phys 29(6):1109–1115

    Article  PubMed  Google Scholar 

  • DIN Deutsches Institut für Normung (1997) Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung, Teil 2: Ionisationsdosimetrie, Deutsche Norm DIN 6800–6802, Deutsches Institut für Normung, Berlin

    Google Scholar 

  • Feist H (1982) Determination of the absorbed dose to water for high energy photons and electrons by total absorption of electrons in ferrous sulphate solution. Phys Med Biol 27:1435–1447

    Article  CAS  Google Scholar 

  • Greene D, Williams PC (1997) Linear accelerators for radiation therapy. IOP-Publishing, Bristol

    Google Scholar 

  • IAEA International Atomic Energy Agency (2000) Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. Technical Report Series no. 398, IAEA, Wien

    Google Scholar 

  • ICRU International Commission on Radiation Units and Measurements (1984) Stopping powers for electrons and positrons, ICRU Report 37, ICRU, Bethesda, MD

    Google Scholar 

  • International Organization for Standardization (ISO) (1995) Guide to the Expression of Uncertainty in Measurement. Switzerland

    Google Scholar 

  • Johns HE, Cunningham JR (1971) Physics of radiology, Charles C. Thomas Publ. 3rd edn. Thomas, Springfield IL

    Google Scholar 

  • Jones AO, Kleiman MT (2003) Patient setup and verification for intensity-modulated radiation therapy (IMRT). Med Dosim 28:175–183

    Article  PubMed  Google Scholar 

  • Karzmark CJ, Nunan CS, Tanabe E (1993) Medical electron accelerators. McGraw-Hill, New York

    Google Scholar 

  • Loverock L (2007) Linear Accelerators. In: Mayles P, Nahum L and Rosenwald JC (eds) Handbook of Radiotherapy PhysicsTaylor & Francis, S 197–240

    Google Scholar 

  • Mould RF (1993) A century of x-rays and radioactivity in medicine. IOP Publishing, Bristol

    Google Scholar 

  • Niroomand-Rad A, Blackwell C, Coursey B et al. (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55. Med Phys 25:2093–2115

    Article  PubMed  CAS  Google Scholar 

  • Olsson L, Baeck S, Magnussen P, Haraldsson P (1998) 3-D-Dosimetry using gels and MRI. In: Hazle J, Boyer A (eds) Imaging in radiation therapy. AAPM Monograph 24, Medical Physics Publishing, S 475–504

    Google Scholar 

  • Podgorsak E, Metcalfe P and van Dyk J (1999) Medical Accelerators. In: van Dyk J (ed.) The Modern Technology of Radiation Oncology. Medical Physics Publishing S 349–435

    Google Scholar 

  • Reich H (Hrsg) (1990) Dosimetrie ionisierender Strahlung. BG Teubner, Stuttgart

    Google Scholar 

  • Roesch WC, Attix FH (1966) Basic concepts of dosimetry. In: Attix et al. (eds) Radiation dosimetry, Vol. 1: Fundamentals

    Google Scholar 

  • Roos M, Hohlfeld K (1989) Die kalorimetrische Darstellung der Einheit der Wasserenergiedosis. PTB-Mitteilungen 99:370–374

    CAS  Google Scholar 

  • Rowbottom CG, Jaffray DA (2004) Characteristics and performance of a micro-MOSFET: an “imageable” dosimeter for image-guided radiotherapy. Med Phys 31:609–615

    Article  Google Scholar 

  • Rustgi S, Frye D (1995) Dosimetric characterization of radiosurgical beams with a diamond detector. Med Phys 22:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Schlegel W (2006) Beam delivery in 3D conformal radiotherapy using multi-leaf-collimators. In: Schlegel W, Bortfeld T, Grosu AL (eds) New technologies in radiation oncology. Springer, Berlin Heidelberg New York Tokio, S 255–264

    Chapter  Google Scholar 

  • Schlegel W (2000) In: 3D conformal radiation therapy, Multimedia Introduction to Methods and Techniques. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Schlegel W (2002) Bestrahlungsgeräte der Teletherapie. In: Schlegel W, Bille J (Hrsg) Medizinische Physik 2. Springer, Berlin Heidelberg New York Tokio, S 369–393

    Chapter  Google Scholar 

  • Schulz RJ, Huq MS, Venkataramanan N, Motakabbir KA (1991) A comparison of ionization-chamber and water-calorimeter dosimetry for high-energy x-rays. Med Phys 18:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Spencer LV, Attix FH (1955) A theory of cavity ionization. Rad Res 63:191–199

    Article  Google Scholar 

  • Trump JG (1964) Radiation for therapy – in retrospect and prospect. Am J Roentgenol 91:22–30

    CAS  Google Scholar 

  • Webb S (1993) The physics of three-dimensional radiation therapy. IOP-Publishing, Bristol

    Book  Google Scholar 

  • Webb S (1997) The physics of conformal radiotherapy: Advances in technology. IOP-Publishing, Bristol

    Book  Google Scholar 

  • Webb S (2000) Intensity modulated radiation therapy. IOP-Publishing, Bristo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartmann, G., Schlegel, W. (2013). Physikalische Grundlagen. In: Wannenmacher, M., Wenz, F., Debus, J. (eds) Strahlentherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88305-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88305-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88304-3

  • Online ISBN: 978-3-540-88305-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics