Skip to main content

Water Chemistry of Swiss Alpine Rivers

  • Chapter
  • First Online:
Alpine Waters

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 6))

Abstract

Average concentrations of dissolved nutrients (NO3, DRP, K) in the large alpine rivers Rhine, Rhône, Ticino, and Inn, and in small alpine streams and glacier streams, are low compared to those in midland rivers. Concentrations of NO3 in the large rivers clearly exceed background concentrations. In spite of limited anthropogenic activities in alpine catchments, DRP concentrations in large rivers exhibited a downward trend over the last 30 years. Time series of NO3 concentrations were first increasing and then leveled off. Export coefficients of NO3 and DRP in alpine streams fall in the range of those estimated for nonagricultural lands and forests on the Swiss Plateau.

The chemical weathering rate of rock-forming minerals in alpine catchments is about 165 ± 45 g m−2 y−1, corresponding to an ablation rate of about 0.06 mm y−1. Rates are dominated by the reaction of carbonate-containing rocks with CO2 and the dissolution of anhydrite, whereas the weathering of silicate minerals contributes little. Total chemical weathering rates are in the same range as the export rate of fine sediments, as part of physical weathering products. In this respect, alpine rivers differ distinctly from lowland running waters. Long-term observations also revealed small changes in concentrations and loads of geochemical constituents. An increase in water temperature may be one driver for these changes, although other factors also play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca:

Calcium

CO2 :

Carbon dioxide

DRP:

Dissolved reactive phosphorous

H4SiO4 :

Silicic acid

K:

Potassium

Mg:

Magnesium

NO3 :

Nitrate

P:

Phosphorous

SS:

Suspended solids

TP:

Total phosphorous

References

  1. Wehren B, Weingartner R, Schädler B, Viviroli D (2010) General characteristics of Alpine waters. In: Bundi U (ed.) Alpine Waters. Handbook of Environmental Chemistry, vol. 6. Springer, Heidelberg

    Google Scholar 

  2. Schädler B, Weingartner R (2010) Impact of Climate Change on Water Resources in the Alpine Regions of Switzerland. In: Bundi U (ed.) Alpine waters. Handbook of Environmental chemistry, vol. 6. Springer, Heidelberg

    Google Scholar 

  3. Hydrological Yearbook of Switzerland (2008) Federal Office for the Environment, Bern

    Google Scholar 

  4. Stanners D, Bourdeau P (eds) (1995) Europe’s Environment, European Environment Agency, Copenhagen

    Google Scholar 

  5. Peter A, Kienast F, Woolsey S (2005) River rehabilitation in Switzerland: Scope, challenges and research. Arch Hydrobio Suppl Large Rivers 155:643–656

    Google Scholar 

  6. Wehren B, Schädler B, Weingartner R (2010) Human Interventions. In: Bundi U (ed.) Alpine Waters. Handbook of Environmental Chemistry, vol. 6. Springer, Heidelberg

    Google Scholar 

  7. EC 2000/60 (2000) Directive of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJ L327, 22.12.2000:1–72

    Google Scholar 

  8. Swiss Water Protection Ordinance (1998) Federal Office for the Environment, Bern

    Google Scholar 

  9. Stumm W, Morgan JJ (1996) Aquatic Chemistry, 3rd edn. Wiley Interscience, New York

    Google Scholar 

  10. Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice-Hall, London

    Google Scholar 

  11. Banfield JF, Nealson KH (eds) (1997) Geomicrobiology: Interaction between microbes and minerals, Reviews in Mineralogy 35, Mineralogical Society of America, Washington

    Google Scholar 

  12. White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 61:3277–3291

    Article  Google Scholar 

  13. Berner EK, Berner RA (1996) Global environment: water, air and geochemical cycles. Prentice-Hall, Upper Sadle River

    Google Scholar 

  14. Malmström ME, Destouni G, Banwart SA, Strömberg BHE (2000) Resolving the scale-dependence of mineral weathering rates. Environ Sci Techn 34:1375–1378

    Article  Google Scholar 

  15. Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562

    Article  CAS  Google Scholar 

  16. Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58:2341–2359

    Article  CAS  Google Scholar 

  17. Avila A, Neal C, Terradas J (1996) Climate change implication for streamflow and streamwater chemistry in a Mediterranean catchment. J Hydrol 177:99–116

    Article  CAS  Google Scholar 

  18. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  19. Szramek K, McIntosh JC, Williams EL, Kanduc T, Oginic N, Walter LM (2007) Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: Carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins. Geochem Geophy Geos 8:17 Q04002 doi:10.1029/GC001337

    Google Scholar 

  20. Stoessel F (1989) On the ecology of ciliates in riverwaters: The evaluation of water quality via ciliates and filamentous bacteria. Aquat Sci 51:235

    Article  Google Scholar 

  21. Uehlinger U, Maisch M, Rothenbühler C, Zah R, (2003) Val Roseg: A high alpine catchment, In: Ward JV, Uehlinger U (eds) Ecology of a glacial Floodplain, Kluwer, Netherlands

    Google Scholar 

  22. Uehlinger U (2007) Eawag, private communication

    Google Scholar 

  23. NADUF:National Long-Term Surveillance of Swiss Rivers, www.naduf.ch

  24. Siegrist HR, Boller M (1999) Auswirkungen des Phosphatverbots in den Waschmitteln auf die Abwasserreinigung in der Schweiz. Korrespondenz Abwasser 46:57–65

    Google Scholar 

  25. Moosmann L, Gächter R, Müller B, Wüest A (2006) Is phosphorus retention in autochthonous lake sediments controlled by oxygen or phosphorus? Limol Oceanogr 51:763–771

    Article  CAS  Google Scholar 

  26. Zobrist J, Sigg L, Schoenenberger U (2004) NADUF-thematische Auswertung der Messresultate 1974 bis 1998. Eawag Schriftenreihe Nr. 18

    Google Scholar 

  27. Müller B, Stierli R, Wüest A (2006) Phosphate adsorption by mineral weathering particles in oligotrophic waters of high particle content. Water Resour Res 42 doi:10.1029/2005WR004778

    Google Scholar 

  28. EMEP Report 1/00 (2000) Transboundary acidification and eutrophication in Europe. Appendix 3 (ed) Norwegian Meteorological Institute, Oslo

    Google Scholar 

  29. Zobrist J, Reichert P (2006) Bayesian estimation of export coefficients from diffuse and point sources in Swiss watersheds. J Hydrol 329:207–223

    Article  Google Scholar 

  30. Müller R (1990) Stickstoff-Toxizität für Fische und herzuleitende Grenzwerte. EAWAG-News 30:33–36

    Google Scholar 

  31. Jakob A, Liechti P, Schädler B (1996) Temperatur in Schweizer Gewässern- Quo vadis? Gas-Wasser-Abwasser 76:288–294

    Google Scholar 

  32. Jakob A, Zobrist J, Davis JS, Liechti P, Sigg L (1994) NADUF-Langzeitbeobachtung des chemisch-physikalischen Gewässerzustandes. Gas-Wasser-Abwasser 74:171–186

    Google Scholar 

  33. Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  CAS  Google Scholar 

  34. Hosein R, Arn K, Steinmann P, Adatte T, Föllmi KB (2004) Carbonate and silicate weathering in two presently glaciated, crystalline catchments in the Swiss Alps. Geochim Cosmochim Acta 68:1021–1033

    Article  CAS  Google Scholar 

  35. Moon S, Huh Y, Qin J, van Pho N (2007) Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their control factors. Geochim Cosmochim Acta 71:1411–1430

    Article  CAS  Google Scholar 

  36. Grasso DA, Jakob A (2003) Charge de sediments en suspension, comparaison entre deux methods de calcul. Gas-Wasser-Abwasser 83:898–905

    Google Scholar 

Download references

Acknowledgments

The author thanks the initiator of this chapter, Bernhard Wehrli, ETHZ and Eawag, for his fruitful suggestions, Urs Uehlinger for providing his data set of glacier streams, and Chris Robinson for amendments to the English text. The constant effort of the NADUF team to perform precisely the long-term river survey is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Zobrist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zobrist, J. (2010). Water Chemistry of Swiss Alpine Rivers. In: Bundi, U. (eds) Alpine Waters. The Handbook of Environmental Chemistry(), vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88275-6_5

Download citation

Publish with us

Policies and ethics