Skip to main content

Imaging Interseismic Locking at the Nankai Subduction Zone, Southwest Japan

  • Conference paper
Subduction Zone Geodynamics

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Recent geodetic and seismological observations have revealed that brittle-plastic transition zones at subduction zone interfaces are loci of slow slip episodes and nonvolcanic harmonic tremors. It is therefore important to estimate the depth range of brittle-plastic transition zones and how interplate locking changes with space and time within the brittle-plastic transition zone, not only for understanding the interseismic stress accumulation process in subduction zones but also to explore the causes of slow earthquakes and nonvolcanic harmonic tremors. With this point of view, the depth variations of interplate locking status in the Nankai trough, southwest Japan, were investigated by inverting vertical Global Positioning System (GPS) velocities. Although vertical component of GPS velocities have rarely been used as important information because of its higher noise level, we employed vertical, rather than, horizontal, velocities because the vertical deformation fi eld will enable us to separate rigid plate motions from deformation due to interplate locking; horizontal displacements contain both rigid plate motion and deformation from interplate locking, whereas vertical displacements contain only the interplate locking effect. Interplate locking was estimated for three profi les: the source region of the 1946 Nankaido earthquake, that of the 1944 Tonankai earthquake, and the Tokai seismic gap. The results show a gradual decrease of interplate coupling between about 20–25 and 35–45 km depth with a plateau region between 25–35 km for all three profi les. These plateaus may be interpreted as stable– unstable boundary in rate- and state-dependent friction or represent the change in mechanism (say, frictionally to plastically) or material. The depth of the brittle-plastic transition zone in the Tokai profi le seems to be shallower than other two probably because of the younger and hotter Philippine Sea plate in the Tokai area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando M (1975). Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophysics 27:119–140

    Article  Google Scholar 

  • Aoki Y, Scholz CH (2003a). Vertical deformation of the Japanese islands, 1996–1999. J Geophys Res 108:2257, doi:10.1029/ 2002JB002129

    Article  Google Scholar 

  • Aoki Y, Scholz CH (2003b). Interseismic deformation at the Nankai subduction zone and the Median Tectonic Line, southwest Japan. J Geophys Res 108:2470, doi:10.1029/ 2003JB002441

    Article  Google Scholar 

  • Baba T, Cummins PR (2005). Contiguous rupture areas of two Nankai Trough earthquakes revealed by high-resolution tsunami waveform inversion. Geophys Res Lett 32:L08305, doi:10.1029/2004GL022320

    Article  Google Scholar 

  • Bourne SJ, England PC Parsons B (1998). The motion of crustal blocks driven by fl ow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature 391:655–659

    Article  Google Scholar 

  • Brace WF, Kohlstedt D (1980). Limits on lithospheric stress imposed by laboratory experiments. J Geophys Res 85: 6248–6252

    Article  Google Scholar 

  • Byrne DE, Davis DM, Sykes LR (1988). Loci and maximumsize of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7:833–857

    Article  Google Scholar 

  • Dawers NH, Anders MH, Scholz CH (1993). Growth of normal faults – displacement-length scaling. Geology 21:1107–1110

    Article  Google Scholar 

  • Douglas BC (1991). Global sea level rise. J Geophys Res. 96: 6981–6992

    Article  Google Scholar 

  • Douglas A, Beavan J, Wallace L, Townend J (2005). Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys Res Lett 32:L16305, doi:10.1029/ 2005GL023607

    Article  Google Scholar 

  • Dragert H, Wang K, James TS (2001). A silent slip event on the deeper Cascadia subduction interface. Science 292: 1525–1528

    Article  Google Scholar 

  • Gilbert L, Scholz CH, Beavan J (1994). Strain localization along the San Andreas fault: consequences for loading mechanisms. J Geophys Res 99:975–984

    Article  Google Scholar 

  • Hashimoto C, Fukui K, Matsu'ura M (2004). 3-D modelling of plate interfaces and numerical simulation of long-term crustal deformation in and around Japan. Pure Appl Geophys 161:2053–2068

    Article  Google Scholar 

  • Heki K, Miyazaki S, Tsuji H (1997). Silent fault slip following an interplate thrust earthquake at the Japan trench. Nature 386:595–598

    Article  Google Scholar 

  • Henstock TJ, Levander A, Hole JA (1997). Deformation in the lower crust of the San Andreas fault system in northern California. Science 278:650–653

    Article  Google Scholar 

  • Hirose H, Obara K (2005). Repeating short- and long-term slow slip events with deep tremor activity around the Bungo channel region, southwest Japan. Earth Planet Space 57: 961–972

    Google Scholar 

  • Hirose H, Obara K (2006). Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan Geophys Res Lett. 33:L17311, doi:10.1029/2006GL026579

    Article  Google Scholar 

  • Hirose H, Hirahara K, Kimata F, Fujii N, Miyazaki S (1999). A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys Res Lett 26:3237–3240

    Article  Google Scholar 

  • Hyndman RD, Wang K, Yamamo M (1995). Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J Geophys Res 100:15373–15392

    Article  Google Scholar 

  • Ide S, Shelly DR, Beroza GC (2007a). Mechanism of deep low frequency earthquakes: Further evIDence that deep non-volcanic tremor is generated by shear slip on the plate interface. Geophys Res Lett 34:L03308, doi:10.1029/ 2006GL028890

    Article  Google Scholar 

  • Ide S, Beroza GC, Shelly DR, UchIDe T (2007b). A scaling law for slow earthquakes. Nature 447:76–79

    Article  Google Scholar 

  • Ishibashi K (1981). Specification of soon-to-occur seismic faulting in the Tokai District, central Japan, based on seismotec-tonics. In: Simpson DW, Richards PG (eds) Earthquake prediction: an international review, American Geophysical Union, Washington DC, pp 297–332

    Chapter  Google Scholar 

  • Ito Y, Obara K, Shiomi K, Sekine S, Hirose H (2007). Slow earthquakes coincIDent with episodic tremors and slow slip events. Science 315:503–506

    Article  Google Scholar 

  • Kanamori H (1972). Tectonic implications of the 1944 Tonankai and 1946 NankaIDo earthquakes. Phys Earth Planet Inter 5:129–139

    Article  Google Scholar 

  • Kao H, Shan SJ, Rogers G, Dragert H (2007). Migration characteristics of seismic tremors in the northern Cascadia margin. Geophys Res Lett 34:doi:10.1029/2006GL028430

    Google Scholar 

  • Katsumata A, Kamaya N (2003). Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan. Geophys Res Lett 30:1020, doi:10.1029/2002GL015981

    Article  Google Scholar 

  • Kawasaki I, Asai Y, Tamura Y (2001). Space-time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench. Tectonophysics 330:267–283

    Article  Google Scholar 

  • Kodaira S, Takahashi H, Nakanishi A, Miura S, Kaneda Y (2000). Subducted seamount imaged in the rupture zone of the 1946 NankaIDo earthquake. Science 289:104–106

    Article  Google Scholar 

  • Kodaira S, IIDaka T, Kato A, Park JO, Iwasaki T, Kaneda Y (2004). High pore pressure may cause silent slip in the Nankai trough. Science 304:1295–1298

    Article  Google Scholar 

  • Kostoglodov V, Singh SK, Santiago JA, Franco SI, Larson KM, Lowry AR, Bilham R (2003). A large silent earthquake in the Guerrero seismic gap, Mexico. Geophys Res Lett. 30(15): 1807, doi:10.1029/2003GL017219

    Article  Google Scholar 

  • Larson KM, Lowry AR, Kostoglodov V, Hutton W, Sánchez O, Hudnut K, Suarez G (2004). Crustal deformation measurements in Guerrero, Mexico. J Geophys Res 109:B04409, doi:10.1029/2003JB002843

    Article  Google Scholar 

  • Mansinha L, Smylie DE (1971). The displacement fi elds of inclined faults. Bull Seismol Soc Amer 61:1433–1440

    Google Scholar 

  • Mavco GM (1981). Mechanics of motion on major faults. Ann Rev Earth Planet Sci 9:81–111

    Article  Google Scholar 

  • Mazzotti S, Le Pichon X, Henry P, Miyazaki S (2000). Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS. J Geophys Res 105:13,159–13,177

    Article  Google Scholar 

  • McCaffrey R (2002). Crustal block rotations and plate coupling. In: Stein S, Freymueller JT (eds) Plate Boundary Zones, American Geophysical Union, Washington DC, pp 101–122

    Chapter  Google Scholar 

  • Menke W (1989). Geophysical Data Analysis: Discrete Inverse Theory, rev. ed. 289 pp, Academic Press, San Diego, CA

    Google Scholar 

  • Miller MM, Melbourne T, Johnson DJ, Sumner WQ (2002). Periodic slow earthquakes from the Cascadia subduction zone. Science 295:2423

    Article  Google Scholar 

  • Miyazaki S, Heki K (2001). Crustal velocity fi eld of southwest Japan: subduction and arc-arc collision. J Geophys Res 106:4305–4326

    Article  Google Scholar 

  • Miyazaki S, McGuire JJ, Segall P (2003). A transient subduc-tion zone slip episode in southwest Japan observed by the nationwIDe GPS array. J Geophys Res 108:2087, doi:10.1029/ 2001JB000456

    Article  Google Scholar 

  • Miyazaki S, Segall P, McGuire JJ, Kato T, Hatanaka Y (2006). Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J Geophys Res 111:B03409, doi:10.1029/2004JB003426

    Article  Google Scholar 

  • Molnar P, England P (1995). Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet Sci Lett 131:57–70

    Article  Google Scholar 

  • Nadeau RM, Dolenc D (2005). Nonvolcanic tremors deep beneath the San Andreas fault. Science 307:389

    Article  Google Scholar 

  • Nedimović, MR, Hyndman RD, Ramachandran K, and Spence GD (2003). Refl ection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature 424:416–420

    Article  Google Scholar 

  • Nur A, Mavko G (1974). Postseismic viscoelastic rebound. Science 183:204–206

    Article  Google Scholar 

  • Obara K (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296:1679–1681

    Article  Google Scholar 

  • Obara K, Hirose K, Yamamizu F, Kasahara K (2004). Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys Res Lett 31:L23602, doi:10.1029/2004GL020848

    Article  Google Scholar 

  • Ohmi S, Obara K (2002). Deep low-frequency earthquakes beneath the focal region of the Mw 6.7 2000 Western Tottori earthquake. Geophys Res Lett. 29(16):1807, doi:10.1029/ 2001GL014469

    Article  Google Scholar 

  • Ohta Y, Freymueller JT, Hreinsdóttir, Suito H (2006). A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet Sci Lett 247:108–116

    Article  Google Scholar 

  • Okino K, Ohara Y, Kasuga S, Kato Y (1999). The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290

    Article  Google Scholar 

  • Ozawa S, Murakami M, KaIDzu M, Tada T, Sagiya T, Hatanaka Y, Yarai H, Nishimura T (2002). Detection and monitoring of ongoing aseismic slip in the Tokai region, central Japan. Science 298:1009–1012

    Article  Google Scholar 

  • Ozawa S, Suito H, Imakiire T, Murakami M (2007). Spatiotemporal evolution of aseismic interplate slip between 1996 and 1998 and between 2002 and 2004, in Bungo channel, southwest Japan. J Geophys Res 112:B05409, doi:10.1029/2006JB004643

    Article  Google Scholar 

  • Parsons T (1998). Seismic-refl ection evIDence that the Hayward fault extends into the lower crust of the San Francisco Bay Area, California. Bull Seismol Soc Amer 88:1212–1223

    Google Scholar 

  • Pacheco JF, Sykes LR (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Amer 82:1306–1349

    Google Scholar 

  • Pacheco JF, Sykes LR, Scholz CH (1993). Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98:14133–14159

    Article  Google Scholar 

  • Park JO, Tsuru T, Takahashi N, Hori T, Kodaira S, Nakanishi A, Miura S, Kaneda Y (2002). A deep strong refl ector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release. J Geophys Res 107(B4):2061, doi:10.1029/ 2001JB000262

    Article  Google Scholar 

  • Rani S, Singh SJ (1992). Static deformation of a uniform half-space due to a long dip-slip fault. Geophys J Int 109: 469–476

    Article  Google Scholar 

  • Rogers G, Dragert H (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300:1942–1943

    Article  Google Scholar 

  • Sagiya T, Thatcher W (1999). Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan. J Geophys Res 104:1111–1129

    Article  Google Scholar 

  • Savage JC (1983). A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88: 4984–4996

    Article  Google Scholar 

  • Savage JC (1995). Interseismic uplift at the Nankai subduction zone, southwest Japan, 1951–1990. J Geophys Res 100: 6339–6350

    Article  Google Scholar 

  • Savage JC, Prescott WH (1978). Asthenosphere readjustment and the earthquake cycle. J Geophys Res 83:3369–3376

    Article  Google Scholar 

  • Savage JC,Thatcher W (1992). Interseismic deformation at the Nankai Trough, Japan, subduction zone. J Geophys Res 97:11,117–11,135

    Google Scholar 

  • Savage JC, Svarc JL, Prescott WH (1999). Geodetic estimates of fault slip rates in the San Francisco Bay area. J Geophys Res 104:4995–5002

    Article  Google Scholar 

  • Scholz CH (1988). The brittle-plastic transition and the depth of seismic faulting. Geol Rundsch 77:319–328

    Article  Google Scholar 

  • Scholz CH (1994). A reappraisal of large earthquake scaling. Bull Seismol Soc Amer 84:215–218

    Google Scholar 

  • Scholz CH (1998). Earthquakes and friction laws. Nature 391:37–42

    Article  Google Scholar 

  • Scholz CH (2002). The mechanics of earthquakes and faulting, second ed, 471 pp, CambrIDge University Press, CambrIDge, UK

    Book  Google Scholar 

  • Scholz CH, Campos J (1995). On the mechanism of seismic decoupling and back arc spreading at subduction zones. J Geophys Res. 100:22103–22115

    Article  Google Scholar 

  • Seno T, Stein S, Gripp AE (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J Geophys Res 98:17941–17948

    Article  Google Scholar 

  • Shelly DR, Beroza GC, Ide S, Nakamula S (2006). Low-frequency earthquakes in Shikoku, Japan, and the relationship to episodic tremor and slip. Nature 442:188–191

    Article  Google Scholar 

  • Shelly DR, Beroza GC, Ide S (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature 446: 305–307

    Article  Google Scholar 

  • Shiomi K., Sato H, Obara K, Ohtake M (2004). Confi guration of subducting Philippine Sea plate beneath southwest Japan revealed from receiver function analysis based on the multi-variate autoregressive model. J Geophys Res 109:B04308, doi:10.1029/2003JB002774

    Article  Google Scholar 

  • Shiono K, Mikumo T, Ishikawa Y (1980). Tectonics of the Kyushu-Ryukyu arc evIDenced from seismicity and focal mechanisms of shallow to intermediate-depth earthquakes. J Phys Earth 28:17–43

    Article  Google Scholar 

  • Sibson R (1984). Roughness at the base of the seismogenic zone: contributing factors. J Geophys Res 89:5791–5799

    Article  Google Scholar 

  • Stern RJ (2002). Subduction zones. Rev Geophys 40:1012, doi:10.1029/2001RG000108

    Article  Google Scholar 

  • Tanioka Y, Satake K (2001). Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake. Earth Planet Space 53:235–241

    Google Scholar 

  • Taylor B, Klaus A, Brown GR, Moore GF, Okamura Y, Murakami F (1991). Structural development of sumisu rift, Izu-Bonin arc. J Geophys Res 96:16113–16129

    Article  Google Scholar 

  • Townend J, Zoback MD (2006). Stress, strain, and mountain building in central Japan. J Geophys Res 111: B03411, doi:10.1029/2005JB003759

    Article  Google Scholar 

  • Tse ST, Rice JR (1986). Curstal earthquake instability in relation to the depth variation of frictional slip properties. J Geophys Res 91:9452–9472

    Article  Google Scholar 

  • Uyeda S, Kanamori H (1979). Back arc opening and the mode of subduction. J Geophys Res 84:1049–1061

    Article  Google Scholar 

  • Vrolijk P (1990). On the mechanical role of smectite in subduc-tion zones. Geology 18:703–707

    Article  Google Scholar 

  • Wang K (2000). Stress-strain “paradox,” plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones. Tectonophysics 319:321–338

    Article  Google Scholar 

  • Wang K, Dixon TH (2004). “Coupling” semantics and science in earthquakes research. EOS Trans Am Geophys Union 85:180

    Article  Google Scholar 

  • Wang K, Wells R, Mazzotti S, Hyndman RD, Sagiya T (2003). A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J Geophys Res 108:2026, doi:10.1029/2001JB001227

    Article  Google Scholar 

  • Wahba G (1990). Spline Models for Observational Data. 169 pp., SIAM, Philadelphia, PA

    Book  Google Scholar 

  • Wessel P, Smith WHF (1998). New, improved version of Generic Mapping Tools released. EOS 79:579

    Article  Google Scholar 

  • Yamano M, Kinoshita M, Goto S, Matsubayashi O (2003). Extremely high heat fl ow anomaly in the mIDdle part of the Nankai trough. Phys Chem Earth 28:487–497

    Article  Google Scholar 

  • Yoshioka S, Mikumo T, Kostoglodov V, Larson KM, Lowry AR, Singh SK (2004). Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterion. Phys Earth Planet Inter 146:513–530

    Article  Google Scholar 

  • Zang SX, Chen QY, Ning JY, Shen ZK, Liu YG (2002). Motion of the Philippine Sea plate consistent with the NUVEL-1A model. Geophys J Int 150:809–819

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aoki, Y., Scholz, C.H. (2009). Imaging Interseismic Locking at the Nankai Subduction Zone, Southwest Japan. In: Lallemand, S., Funiciello, F. (eds) Subduction Zone Geodynamics. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87974-9_9

Download citation

Publish with us

Policies and ethics