Skip to main content

Assessment of Fluid Requirements: The Fluid Challenge

  • Chapter
  • First Online:
Hemodynamic Monitoring Using Echocardiography in the Critically Ill
  • 3723 Accesses

Abstract

The fluid challenge can be applied as a technique to detect patients who may benefit from fluid administration, especially when methods predicting fluid responsiveness cannot be applied. It is important to evaluate the response to fluids, even when patients are predicted as responsive. Indeed, fluid responsiveness does not imply that fluids can be tolerated: sometimes the increase in preload results in a nontolerated increase in pulmonary capillary pressure, even when cardiac output increases. The principle of the fluid challenge is to evaluate the hemodynamic response to fluid administration. It implies that a given amount of fluid be administered over a relatively limited period of time and that the hemodynamic response be evaluated, both in terms of increase in stroke volume and in terms of tolerance, as estimated by left atrial pressure. With echocardiography, left atrial pressures, and changes thereof, are estimated by mitral inflow E and A waves. Changes in stroke volume are estimated at the left ventricular outflow tract level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chytra I, Pradl R, Bosman R et al (2007) Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care 11:R24

    Article  PubMed  Google Scholar 

  2. Brienza N, Giglio MT, Marucci M, et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090

    Google Scholar 

  3. Hollenberg SM, Dumasius A, Easington C et al (2001) Characterization of a hyperdynamic murine model of resuscitated sepsis using echocardiography. Am J Respir Crit Care Med 164:891–895

    PubMed  CAS  Google Scholar 

  4. Zanotti-Cavazzoni SL, Guglielmi M, Parrillo JE et al (2009) Fluid resuscitation influences cardiovascular performance and mortality in a murine model of sepsis. Intensive Care Med 35:748–754

    Article  PubMed  Google Scholar 

  5. Rivers E, Nguyen B, Havstadt S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  6. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  PubMed  CAS  Google Scholar 

  7. Michard F, Boussat S, Chemla D et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  8. Hofer CK, Muller SM, Furrer L et al (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128:848–854

    Article  PubMed  Google Scholar 

  9. De Backer D, Heenen S, Piagnerelli M et al (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  10. Feissel M, Michard F, Mangin I et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873

    Article  PubMed  CAS  Google Scholar 

  11. Slama M, Masson H, Teboul JL et al (2004) Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intensive Care Med 30:1182–1187

    Article  PubMed  Google Scholar 

  12. Weil MH, Henning RJ (1979) New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky Memorial Lecture. Anesth Analg 58:124–132

    Article  PubMed  CAS  Google Scholar 

  13. Vincent J-L, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1337

    Google Scholar 

  14. Verheij J, van Lingen A, Beishuizen A et al (2006) Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med 32:1030–1038

    Article  PubMed  CAS  Google Scholar 

  15. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 34:17–60

    Article  PubMed  Google Scholar 

  16. van der Heijden M, Verheij J, Nieuw Amerongen GP, et al (2009) Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia*. Crit Care Med 37:1275–1281

    Google Scholar 

  17. Combes A, Arnoult F, Trouillet JL (2004) Tissue Doppler imaging estimation of pulmonary artery occlusion pressure in ICU patients. Intensive Care Med 30:75–81

    Article  PubMed  Google Scholar 

  18. Vignon P, AitHssain A, Francois B et al (2008) Echocardiographic assessment of pulmonary artery occlusion pressure in ventilated patients: a transoesophageal study. Crit Care 12:R18

    Article  PubMed  Google Scholar 

  19. Vignon P, Allot V, Lesage J et al (2007) Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care 11:R43

    Article  PubMed  Google Scholar 

  20. Lamia B, Maizel J, Ochagavia A et al (2009) Echocardiographic diagnosis of pulmonary artery occlusion pressure elevation during weaning from mechanical ventilation. Crit Care Med 37:1696–1701

    Article  PubMed  Google Scholar 

  21. Vieillard-Baron A, Schmitt JM, Augarde R et al (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 29:1551–1555

    Article  PubMed  CAS  Google Scholar 

  22. Vieillard-Baron A, Chergui K, Rabiller A et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    PubMed  Google Scholar 

  23. Mercat A, Diehl JL, Meyer G et al (1999) Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med 27:540–544

    Article  PubMed  CAS  Google Scholar 

  24. Dark PM, Delooz HH, Hillier V et al (2000) Monitoring the circulatory responses of shocked patients during fluid resuscitation in the emergency department. Intensive Care Med 26:173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel De Backer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

De Backer, D. (2011). Assessment of Fluid Requirements: The Fluid Challenge. In: de Backer, D., Cholley, B., Slama, M., Vieillard-Baron, A., Vignon, P. (eds) Hemodynamic Monitoring Using Echocardiography in the Critically Ill. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87956-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87956-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87954-1

  • Online ISBN: 978-3-540-87956-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics