Skip to main content

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 5))

Abstract

The term “cookoff” is a relatively inelegant descriptor of a very complicated series of events. However, it has entered the vernacular, and when it is used, it connotes a process that would be difficult to describe with another single term. The process begins with a thermal source that raises the temperature above ambient, where presumably the kinetic processes leading to decomposition of the energetic material are, for all intents and purposes, zero. The thermal source can be self-produced, as in the center of a well-insulated, large volume of energetic material, or it can arise from an external event such as a fire. The heating can be rapid or very slow, or anything in between. The energetic material can be homogeneous, or it may have been damaged, either through thermal expansion and chemical processes or mechanically. As a result, the gases produced by the increased chemical reaction may either be confined to the immediate vicinity or allowed to permeate throughout a larger volume. The gases carry both thermal and chemical energy and thus the outcome of the heating event can be significantly affected, or, as we show later, even completely determined by their mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, L.C.: Los Alamos National Laboratory Explosives Orientation Course: Sensitivity and Sensitivity Tests, LA-11010-MS, Los Alamos National Laboratory, Los Alamos, NM (1987)

    Google Scholar 

  2. Cooper, P.W., Kurowski, S.R.: Introduction to the Technology of Explosives. Wiley-VCH, New York (1996)

    Google Scholar 

  3. Henkin, H., McGill, R.: Rates of Explosive Decomposition of Explosives, Ind. Eng. Chem. 44, 1391–1395 (1952)

    Google Scholar 

  4. Merzhanov, A.G., Abramov, V.G.: Thermal Explosion of Explosives and Propellants. A Review, Propellant and Explosives 6, 130–148 (1981)

    Article  Google Scholar 

  5. Chung-Yu, C., Jonq-Hwa, S.: Numerical Simulation of Casting Explosives in Shell, Propellants, Explosives and Pyrotechnics 17, 20-26 (1992)

    Google Scholar 

  6. Rogers, R.N.: Thermochemistry of Explosives, Thermochimica Acta 11, 131- 139 (1975)

    Google Scholar 

  7. Brill, T.B., Gongwer, P.E., Williams, G.K.: Thermal-Decomposition of Energetic Materials .66. Kinetic Compensation Effects in HMX, RDX, and NTO, J. Phys. Chem. 98, 12242–12247 (1994)

    Google Scholar 

  8. Catalano, E., McGuire, R., Lee, E., Wrenn, E., Ornellas, D., Walton, J.: In: The Thermal Decomposition and Reaction of Confined Explosives, Sixth Symposium (International) on Detonation, Coronado, CA, p. 214-222. Office of Naval Research (1976)

    Google Scholar 

  9. Tarver, C.M.: Thermal Decomposition Models for HMX-based Plastic Bonded Explosives, Combust. Flame 137, 50–62 (2004)

    Article  Google Scholar 

  10. Berghout, H., Son, S., Skidmore, C., Idar, D., Asay, B.: Combustion of Damaged PBX 9501 Explosive, Thermochimica Acta 384, 261 (2002)

    Google Scholar 

  11. Berghout, H.L., Son, S.F., Skidmore, C.B., Idar, D.J., Asay, B.W.: Thermochimica Acta 384, 261-277 (2002)

    Google Scholar 

  12. Son, S., Asay, B.W., Whitney, E., Berghout, H.: In: Flame Spread Across Surfaces of PBX 9501, Internaltional Symposium on Combustion, p. 2063-2070. Universität Heidelberg, Heidelberg, Germany (2006)

    Google Scholar 

  13. Dickson, P.M., Asay, B.W., Henson, B.F., Smilowitz, L.B.: Thermal Cook off Response of Confined PBX 9501, Proc. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 460, 3447 (2004)

    Article  Google Scholar 

  14. Hill, L.: In: Burning Crack Networks and Combustion Bootstrapping in Cookoff Explosions, Shock Compression of Condensed Matter, American Physical Society Topical Conference, Baltimore, MD (2005)

    Google Scholar 

  15. Dickson, P.M., Asay, B.W., Henson, B.F., Fugard, C.: In: Measurement of Phase Change and Thermal Decomposition Kinetics During Cookoff of PBX 9501, Shock Compression of Condensed Matter, Snowbird, Utah (1999) p. 837 (APS)

    Google Scholar 

  16. McAfee, J., Asay, B., Campbell, A., Ramsay, J.: In: Deflagration to Detonation Transition in Granular HMX, HMX,Proceedings of the Ninth (International) Syposium on Detonation, Portland, OR, p. 265-279. Office of Naval Research, (1989)

    Google Scholar 

  17. Luebcke, P., Dickson, P., Field, J.: In: Experimental Investigation into the Deflagration to Detonation Transition in Secondary Explosives, Tenth Symposium (International) on Detonation, p. 242-264. Office of Naval Research (1993)

    Google Scholar 

  18. Peterson, P.D., Lee, K.-Y.: Particle Characterization of HMX-based Composite Explosives Using Light Scattering and Polarized Light Microscopy with Image Analysis, Microscope 52, 3-7 (2004)

    Google Scholar 

  19. Renlund, A.M., Baer, M.R., Wellman, G.W., Schmitt, R.G., Hobbs, M.L., Erickson, K.L., Trott, W.M., Miller, J.C.: In: Characterization of Thermally Degraded Energetic Materials, Eleventh Symposium (International) on Detonation, p. 127-134. Snowmass, CO (1998)

    Google Scholar 

  20. Behrens, R.: Thermal decomposition of energetic materials: temporal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine, J. Phys. Chem. 94, 6706–6718 (1990)

    Article  Google Scholar 

  21. Simons, J.: Sponge Model for the Kinetics of Surface Thermal Decomposition of Microcrystalline Solids: Application to HMX, J. Phys. Chem. B 103, 8650–8656 (1999)

    Article  Google Scholar 

  22. Asay, B.W., Son, S.F., Bdzil, J.B.: The Role of Gas Permeation in Convective Burning, Int. J. Multiphase Flow 22, 923–52 (1996)

    Article  MATH  Google Scholar 

  23. Belyaev, A., Bobolev, V., Korotkov, A., Sulimov, A., Chuiko, S.: Transition from Deflagration to Detonation in Condensed Phases, Program for Scientific Translations, Jerulasem, Israel (1975)

    Google Scholar 

  24. Dickson, P., Asay, B., Henson, B., Fugard, C.: In: Observation of the Behavior of Confined PBX 9501 Following a Simulated Cookoff Ignition, 11th International Detonation Symposium, p. 606-611. Snowmass, CO (1998)

    Google Scholar 

  25. Asay, B., Henson, B., Peterson, P., Mang, J.T., Smilowitz, L., Dickson, P.: In: Quantitative Analysis of Damage in PBX 9501 Subjected to a Linear Thermal Gradient, 12th International Detonation Symposium, p. 87-93. San Diego, CA (2002)

    Google Scholar 

  26. Idar, D.J., Thompson, D.G., Gray, G.T., Blumenthal, W.R., Cady, C.M., Peterson, P.D., Roemer, E.L., Wright, W.J., Jacquez, B.L.: In: Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the Mechanical Properties of PBX 9501. AIP Conference Proceedings, p. 821-824. Atlanta, GA (2002) (AIP)

    Google Scholar 

  27. Tarver, C.M., Chidester, S.K.: On the Violence of High Explosive Reactions, Transactions of the ASME. J. Pressure Vessel Technol. 127, 39–48 (2005)

    Article  Google Scholar 

  28. McGuire, R.R., Tarver, C.M.: In: Chemical Decomposition Models for the Thermal Explosion of Confined HMX, TATB, RDX, and TNT Explosives, Proceedings - 7th Symposium (International) on Detonation. p. 56-64. MD, USA: US Naval Surface Weapons Cent (NSWC MP 82-334), White Oak (1982)

    Google Scholar 

  29. Henson, B.: In: An Ignition Law for PBX 9501 from Thermal Explosion to Detonation, 13th International Detonation Symposium, Norfolk, VA, International Detonation Symposium (2006)

    Google Scholar 

  30. Henson, B.F., Asay, B.W., Dickson, P.M., Fugard, C., Funk, D.J.: In: Measurement of Explosion Time as a Function of Temperature for PBX 9501, PBX 9501, Eleventh International Symposium on Detonation, Snowmass, CO (1998)

    Google Scholar 

  31. Kaneshige, M.J., Renlund, A.M., Schmitt, R.G., Erikson, W.W.: In: Cook off Experiments for Model Validation, Twelfth International Detonation Syposium, p. 821-830. San Diego, CA (2002)

    Google Scholar 

  32. Henson, B.F., Asay, B.W., Smilowitz, L.B., Dickson, P.M.: Ignition Chemistry in HMX from Thermal Explosion to Detonation. AIP Conf. Proc. 620, 1069–1072 (2002)

    Article  Google Scholar 

  33. Asay, B.W., Son, S.F., Dickson, P.M., Smilowitz, L.B., Henson, B.F.: An Investigation of the Dynamic Response of Thermocouples in Inert and Reacting Condensed Phase Energetic Materials, Propellants Explosives Pyrotechnics 30, 199 (2005)

    Article  Google Scholar 

  34. Smilowitz, L., Henson, B.F., Sandstrom, M.M., Asay, B.W., Oschwald, D.M., Romero, J.J., Novak, A.M.: Fast Internal Temperature Measurements in PBX 9501 Thermal Explosions. AIP Conf. Proc. 845, 1211–1214 (2006)

    Article  Google Scholar 

  35. Beckstead, M.W.: Solid-Propellant Combustion Mechanisms and Flame Structure, Pure Appl. Chem. 65, 297–307 (1993)

    Google Scholar 

  36. Morris, C.L.: Proton Radiography for an Advanced Hydrotest Facility, LA-UR- 00-5716, Los Alamos National Laboratory, Los Alamos (2000)

    Google Scholar 

  37. Asay, B., Dickson, P., Henson, B., Smilowitz, L., Tellier, L.: Tellier, Effect of Temperature Profile on Reaction Violence in Heated and Self-ignited PBX 9501, AIP Conf. Proc. 620, 1065–1068 (2002)

    Google Scholar 

  38. Smilowitz, L., Henson, B.F., Sandstrom, M.M., Romero, J.J., Asay, B.W.: Laser Synchronization of a Thermal Explosion, Appl. Phys. Lett. 90, 2441021–2441023 (2007)

    Google Scholar 

  39. Walker, F., Walsey, R.: Explosivstoffe 17, 9-13 (1969)

    Google Scholar 

  40. Howe, P., Frey, R., Taylot, B., Voyle, V.: In: Shock Initiation and the Critical Energy Concept, Proceedings of the Sixth Symposium (International) on Detonation, p. 11-19. Office of Naval Research (1976)

    Google Scholar 

  41. Walker, F.: In: Derivation of the P2?Detonation Criteria, Eighth Symposium (International) on Detonation, p. 1119-1125. Office Of Naval Research (1985)

    Google Scholar 

  42. Baker, W.E., Cox, P.A., Westine, P.S., Kulez, J.J., Strehlow, R.A.: Explosion Hazards and Evaluation. Elsevier, Scientific Publishing, NY (1983)

    Google Scholar 

  43. Dobratz, B.M., Crawford, P.C.: LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants Change 2, Report No. UCRL- 52997-Chg.2; DE91006884 Lawrence Livermore National Lab., CA, USA (1985)

    Google Scholar 

  44. Dagley, I.J., Parker, R.P., Jones, D.A., Montelli, L.: Simulation and Moderation of the Thermal Response of Confined Pressed Explosive Compositions. Combust. Flame 106, 428–441 (1996)

    Article  Google Scholar 

  45. Collignon, S.L., Burgess, W.P., Wilson, W.H., Gibson, K.D.: In: Insensitive Munitions Program for the Development and Evaluation of Metal-Accelerating Explosives, Insensitive Munitions Technology Symposium, p. 136 (1992)

    Google Scholar 

  46. Chidester, S.K., Tarver, C.M., Green, L.G., Urtiew, P.A.: On the Violence of Thermal Explosion in Solid Explosives, Combust. Flame 110, 264–280 (1997)

    Article  Google Scholar 

  47. McCall, G.H., Bongianni, W.L., Miranda, G.A.: Microwave Interferometer for Shock-Wave, Detonation, and Material Motion Measurements, Rev. Sci. Instrum. 56, 1612–1618 (1985)

    Article  Google Scholar 

  48. Brode, H.L.: Numerical Solutions of Spherical Blast Waves, J. Appl. Phys. 26, 766–775 (1955)

    MathSciNet  MATH  Google Scholar 

  49. Victor, A.C.: Simple Calculation Methods for Munitions Cookoff Times and Temperatures, Propellants Explosives Pyrotechnics 20, 252–259 (1995)

    Article  Google Scholar 

  50. Dobratz, B.M.: LLNL Explosives Handbook: Properties of Chemical Explosives and Explosives and Explosive Simulants, Report No. UCRL-52997, Lawrence Livermore National Lab., USA, CA (1981)

    Google Scholar 

  51. Zenin, A.A.: HMX and RDX Combustion Mechanism and Influence on Modern Double-Base Propellant Combustion. J. Propulsion Power 11, 752–758 (1995)

    Article  Google Scholar 

  52. Lee, P.R.: Theory and Techniques of Initiation. Springer, New York, NY (1998)

    Google Scholar 

  53. Price, D., Wehner, J.F.: Transition from Burning to Detonation in Cast Explosives. Combust. Flame 9, 73–80 (1965)

    Article  Google Scholar 

  54. Perry, W.L., Dickson, P.M., Parker, G.R., Asay, B.W.: Quantification of Reaction Violence and Combustion Enthalpy of Plastic Bonded Explosive 9501 under Strong Confinement. J. Appl. Phys. 97, 0235281–0235288 (2005)

    Article  Google Scholar 

  55. Peterson, P.D., Mang, J.T., Asay, B.W.: Quantitative Analysis of Damage in an Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based Composite Explosive Subjected to a Linear Thermal Gradient, J. Appl. Phys. 97, 1 (2005)

    Article  Google Scholar 

  56. Parker, G.R., Peterson, P.D., Asay, B.W., Dickson, P.M., Perry, W.L., Henson, B.F., Smilowitz, L., Oldenborg, M.R.: Examination of Morphological Changes that Affect Gas Permeation Through Thermally Damaged Explosives, Propellants Explosives Pyrotechnics 29, 274 (2004)

    Article  Google Scholar 

  57. Ward, M.J., Son, S.F., Brewster, M.Q.: Role of Gas- and Condensed-phase Kinetics in Burning Rate Control of Energetic Solids, Combust. Theory Modell. 2, 293–312 (1998)

    Article  MATH  Google Scholar 

  58. De Luca, L.: In: Kuo, K.K., Summerfield, M. (eds.) Progress in Astronautics and Aeronautics, vol. 90, p. 661. American Institute of Aeornautics and Astronautics, New York, NY (1984)

    Google Scholar 

  59. Wardell, J.F., Maienschein, J.L.: In: The Scaled Thermal Explosion Experiment, Twelfth International Detonation Symposium, San Diego, CA, p. 384-393. Office of Naval Research (2002)

    Google Scholar 

  60. Wemhoff, A.P., Burnham, A.K., Nichols, A.L.: Application of Global Kinetic Models to HMX Beta to Delta Transition and Cookoff Processes, J. Phys. Chem. 111, 1575–1584 (2007)

    Article  Google Scholar 

  61. Yoh, J.J., MCClelland, M.A., Maienschein, J.L., Wardell, J.F., Tarver, C.M.: Simulating Thermal Explosion of Cyclotrimethylenetrinitramine-based Explosives: Model Comparison with Experiment, J. Appl. Phys. 97, 0835041– 08350411 (2005)

    Google Scholar 

  62. Chidester, S.K., Urtiew, P.A., Green, L.G., Tarver, C.M.: On the Violence of Thermal Explosion in Solid Explosives, Combust. Flame 110, 264–280 (1997)

    Article  Google Scholar 

  63. Dickson, P., Asay, B., Perry, W.L., Parker, G., Oschwald, D.M., Smilowitz, L., Henson, B., Romero, J.: Large-Scale Annular Cookoff Test, LA-UR-03-3787, Los Alamos National Laboratory (2003)

    Google Scholar 

  64. Perry, W.L., Zucker, J., Dickson, P.M., Parker, G.R., Asay, B.W.: The Interplay of Explosive Thermal Reaction Dynamics and Structural Confinement, J. Appl. Phys. vol. 101, No. 7, p. 074901 (Apr 1 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asay, B.W. (2010). Cookoff. In: Asay, B.W. (eds) Shock Wave Science and Technology Reference Library, Vol. 5. Shock Wave Science and Technology Reference Library, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87953-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87953-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87952-7

  • Online ISBN: 978-3-540-87953-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics