Skip to main content

Abstract

Intracranial metastasis is a complication of cancer with formidable consequences. Brain imaging is extensively used to screen patients with newly diagnosed malignant tumors and to evaluate patients with known malignancies who develop neurologic deficits. Recent advances in the management of patients with brain metastases have made accurate diagnosis and localization of these tumors of paramount importance. Brain imaging is also used in accessing responses to and complications of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henson RA, Urich H (1973) Cancer and the nervous system. The neurological manifestation of systematic malignant disease. Blackwell, Oxford, pp 7–58

    Google Scholar 

  2. Willis RA (1973) The spread of the tumors of the human body, 3rd edn. Butterworths, London, pp 251–258

    Google Scholar 

  3. Cairncross G, Posner J (1983) The management of brain metastasis. In: Walker MD (ed) Oncology of the nervous system. Martinus Nijhoff, Boston, pp 341–377

    Google Scholar 

  4. Posner JB, Chernik NL (1978) Intracranial metastasis from systemic cancer. Adv Neuro l18:579–592

    Google Scholar 

  5. Patchell RA (1991) Brain Metastases. Neurol Clin 9:817–824

    CAS  PubMed  Google Scholar 

  6. Black MP (1991) Brain tumors. N Engl J Med 324:1555–1564

    CAS  PubMed  Google Scholar 

  7. Russell DS, Rubinstein LJ (1989) Pathology of tumors of the nervous system, 5th edn. Williams & Wilkins, Baltimore, pp 825–842

    Google Scholar 

  8. Liotta LA, Rao NC, Terranova VP, Barsky S, Thorgeirsson U (1984) Tumor cell attachment and degradation of basement membranes. In: Nicolson GL, Milas L (eds) Cancer invasion and metastasis: biologic and therapeutic aspects. Raven, New York, pp 169–176

    Google Scholar 

  9. Katz DA, Liotta LA (1986) Tumor invasion and metastasis in the central nervous system. Prog Neuropathol 6:119–131

    Google Scholar 

  10. Nicolson GL, Irimura T, Nakajima M, Estrada J (1984) Metastatic cell attachment to and invasion of vascular endothelium and its underlying basal lamina using endothelial cell monolayers. In: Nocolson GL, Milas L (eds) Cancer invasion and metastasis biologic and therapeutic aspects. Raven, New York, pp 145–167

    Google Scholar 

  11. Liotta LA, Kohn E (1990) Cancer invasion and metastasis. JAMA 23:135–150

    Google Scholar 

  12. Folkman J (1986) How is blood vessels growth regulated in normal and neoplastic tissues? Twenty-sixth G.H.A. Clowes Memorial award lecture. Cancer Res 46:467–473

    CAS  PubMed  Google Scholar 

  13. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    CAS  PubMed  Google Scholar 

  14. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    PubMed  Google Scholar 

  15. Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastasis. Lancet Oncol 3:53–57

    CAS  PubMed  Google Scholar 

  16. Olson ME, Chernick NL, Posner JB (1974) Infiltration of the leptomeninges by systemic cancer: a clinical and pathological study. Arch Neurol 30:122–137

    CAS  PubMed  Google Scholar 

  17. Gonzalez-Vitale JC, Garcia-Benuel R (1976) Meningeal carcinomatosis. Cancer 37:2906–2911

    CAS  PubMed  Google Scholar 

  18. Kokkoris PC (1983) Leptomeningeal carcinomatosis: how does cancer reach the pia-arachnoid. Cancer 51:154–160

    CAS  PubMed  Google Scholar 

  19. O’Neil BP, Buckner JC, Coffey RJ et al (1994) Brain metastatic lesions. Mayo Clin 69:1062–1068

    Google Scholar 

  20. Hounsfield GN (1973) Computerized transverse axial scanning tomography. Part I. Description of the system. Br J Radiol 46:1016–1022

    CAS  PubMed  Google Scholar 

  21. Boyd DP, Parker DL (1983) Basic principles of computed tomography. In: Moss AA, Gamsu GE, Genant HK (eds) Computed tomography of the body. WB Saunders, Philadelphia, pp 1–21

    Google Scholar 

  22. Deck MDF, Messima AV, Sackett JF (1976) Computed tomography in metastatic disease of the brain. Radiology 119:115–120

    CAS  PubMed  Google Scholar 

  23. Kane RC (1978) Brain scans for metastasis. JAMA 239:2115–2116

    CAS  PubMed  Google Scholar 

  24. Potts DG, Abbott GF, von Sneidern JV (1980) National cancer institute study: evaluation of computed tomography in the diagnosis of intracranial neoplasms: III. Metastatic tumors. Radiology 136:657–664

    CAS  PubMed  Google Scholar 

  25. Dupont MG, Baleriaux-Waha D, Kuhn G, Bollaert a, Jeanmart I (1981) Computerized axial tomography in the diagnosis of ­cerebral metastasis. Comput Tomogr 5:103–113

    CAS  PubMed  Google Scholar 

  26. Lee YY, Glass JP, Geoffray A, Wallace S (1984) Cranial computed tomographic abnormalities in leptomeningeal metastasis. AJNR Am J Neuroradiol 5:559–563

    Google Scholar 

  27. Davis PC, Hudgins PA, Peterman SB, Hoffman JC Jr (1991) Diagnosis of cerebral metastases: double-dose delayed CT vs contrast-enhanced MR imaging. AJNR Am J Neuroradiol 12:293–300

    CAS  PubMed  Google Scholar 

  28. Hayman LA, Evans RA, Hink VC (1980) Delayed high iodine dose contrast computed tomography in cranial neoplasms. Radiology 136:677–684

    CAS  PubMed  Google Scholar 

  29. Shehadi WH (1982) Contrast media adverse reaction: occurance, recurrence and distribution patterns. Radiology 143:11–17

    CAS  PubMed  Google Scholar 

  30. Lasser EC, Berry CC, Talner LB et al (1987) Pretreatment with corticosteroids to alleviate reactions to intravenous contrast material. N Engl J Med 317:845–849

    CAS  PubMed  Google Scholar 

  31. Katayama H, Yamaguchi K, Kozuka T, Takashima T (1990) Adverse reactions to ionic and nonionic contrast media: a report from the Japanese Committee of Safety of Contrast Media. Radiology 175:621–628

    CAS  PubMed  Google Scholar 

  32. McClennan BL (1990) Ionic and nonionic iodinated contrast media: evolution and strategies for use. AJR Am J Roentgenol 155:255–263

    Google Scholar 

  33. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science 171:1151–1153

    CAS  PubMed  Google Scholar 

  34. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    CAS  Google Scholar 

  35. Mansfield P, Maudsley AA (1977) Medical imaging by NMR. Br J Radiol 50:188–194

    CAS  PubMed  Google Scholar 

  36. Pickett IL, Newhouse JH, Buonanno FS et al (1982) Principles of nuclear magnetic resonance imaging. Radiology 143:157–168

    Google Scholar 

  37. Brant-Zawadski M, Berry I, Osaki L et al (1986) Gd-DTPA in clinical MR brain. I. Intra-axial lesions. AJNR Am J Neuroradiol 7:781–788

    Google Scholar 

  38. Russel EJ, Geremia GK, Johnson CE et al (1987) Multiple cerebral metastases: detectability with Gd-DTPA-enhanced MR imaging. Radiology 165:609–617

    Google Scholar 

  39. Tice HM, Jones KM, Mulkern RV et al (1993) Fast spin-echo imaging of intracranial neoplasms. J Comput Assist Tomogr 17:425–431

    CAS  PubMed  Google Scholar 

  40. Carrier DA, Mawad ME, Kirkpatrick JB, Schmid MF (1994) Metastatic adenocarcinoma to the brain: MR with pathologic correlation. AJNR Am J Neuroradiol 15:155–159

    CAS  PubMed  Google Scholar 

  41. Abdullah ND, Mathews VP (1999) Contrast issues in brain tumor imaging. Neuroimaging Clin North Am 9(4):733–749

    CAS  Google Scholar 

  42. Runge VM, Wells JW, Nelson KL, Linville PM (1994) MR imaging detection of cerebral metastases with a single injection of high-dose gadoteridol. J Mang Reson Imaging 4:669–673

    CAS  Google Scholar 

  43. Van Dijk P, Sijens PE, Schmitz PI, Oudkerk M (1997) Gd-enhanced MR imaging of brain metastases: contrast as a function of dose and lesion size. Magn Reson Imaging 15(5):535–541

    PubMed  Google Scholar 

  44. Niendorf HP, Laniado M, Semmler W, Schorner W, Felix R (1987) Dose administration of gadolinium-DTPA in MR imaging of intracranial tumors. AJNR Am J Neuroradiol 8:803–815

    CAS  PubMed  Google Scholar 

  45. Yuh WTC, Engelken JD, Muhonen MG, Mayr NA, Fisher DJ, Ehrhardt JC (1992) Experience with high-dose gadolinium MR imaging in the evaluation of brain metastasis. AJNR Am J Neuroradiol 13:335–345

    CAS  PubMed  Google Scholar 

  46. Yuh WTC, Fisher DJ, Runge VM et al (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastasis. AJNR Am J Neuroradiol 15:1037–1051

    CAS  PubMed  Google Scholar 

  47. Kuhn MJ, Hammer GM, Swenson LC, Youssef HT, Gleason TJ (1994) MRI evaluation of solitary brain metastases with triple-dose gadoteridol: comparison with contrast enhanced CT and conventional-dose gadopentetate MRI studies in the same patients. Comput Med Imaging Graph 18:391–399

    CAS  PubMed  Google Scholar 

  48. Akeson P, Vikhoff B, Stahlberg F et al (1977) Brain lesion contrast in MR imaging dependence on field strength and concentration of gadodiamide injection in patients and phantoms. Acta Radiol 38:14–18

    Google Scholar 

  49. Chang KH, Ra DR, Han MH et al (1994) Contrast of brain tumors at different MR field strength: Comparison of 0.5 and 2.0 T. AJNR Am J Neuroradiol 15:1413–1419

    CAS  PubMed  Google Scholar 

  50. MathewsVP CKS, Lowe MJ et al (1999) Gadolinium-enhanced fast FLAIR imaging of the brain. Radiology 211:257–263

    Google Scholar 

  51. Melhem ER, Bert RJ, Walker RE (1998) Usefulness of optimized gadolinium-enhanced fast fluid attenuated inversion recovery MR imaging in revealing lesions of the brain. AJR Am J Roentgenol 171:803–807

    CAS  PubMed  Google Scholar 

  52. Grossman RI, Gomori JM, Ramer KN, Lexa FJ, Schnall MD (1994) Magnetization transfer: theory and clinical applications in neuroradiology. Radiographics 14:279–290

    CAS  PubMed  Google Scholar 

  53. Boorstein JM, Wong KT, Grossman RI, Bolinger L, McGowan JC (1994) Metastatic lesions of the brain imaging with magnetization transfer. Radiology 191:799–803

    CAS  PubMed  Google Scholar 

  54. Kurki TLI, Niemi PT, Lundbom N (1992) Gadolinium-enhanced magnetization transfer contrast imaging of intracranial tumors. J Magn Reson Imaging 2:401–406

    CAS  PubMed  Google Scholar 

  55. Finelli DA, Hurst GC, Gullapali RP, Bellon EM (1994) Improved contrast enhancing brain lesions on post gadolinium, T1-weighted spin-echo images with use of magnetization transfer. Radiology 190:553–559

    CAS  PubMed  Google Scholar 

  56. Schorner W, Laniado M, Niendorf HP, Schuber C, Felix R (1986) Time dependent changes in image contrast in brain tumors after gadolinium-DTPA. AJNR Am J Neuroradiol 7:1013–1020

    CAS  PubMed  Google Scholar 

  57. Akeson P, Nordstrom CH, Holtas S (1997) Time-dependency in brain lesion enhancement with gadodiamide injection. Acta Radiol 38:19–24

    CAS  PubMed  Google Scholar 

  58. Sadowski EA, Bennett LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    PubMed  Google Scholar 

  59. Thomsen HS (2007) ESUR guideline: gadolinium-bases contrast media and nephrogenic systemic fibrosis. Eur Radiol 17:2692–2696

    PubMed  Google Scholar 

  60. U.S. Food and Drug Administration (2006) Public health advisory: gadolinium-containing contrast agents for magnetic resonance imaging (MRI) – Omniscan, OptiMARK, Magnevist, Prohance, and MultiHance. www.fda.gov/cder/drug/advisory/gadolinium-agents.htm (Published 8 June 2006. Update 22 Dec 2006. Accessed 7 Dec 2006)

  61. Hayashida Y, Hirai T, Morishita S et al (2006) Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR 27:1419–1425

    CAS  PubMed  Google Scholar 

  62. Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR 22:1081–1088

    CAS  PubMed  Google Scholar 

  63. Bulakbasi N, Kocaoglu M, Farzaliyev A et al (2005) Assessment of diagnostic accuracy of perfusion MR imaging in the primary and metastatic solitary malignant tumors. AJNR 26:2187–2199

    PubMed  Google Scholar 

  64. Law M, Soonmee C, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    PubMed  Google Scholar 

  65. Kremer S, Grand S, Berger F et al (2003) Dynamic contrast-enhanced MRI:differentiating melanomas and renal carcinoma metastases from high-grade gliomas and other metastases. Neuroradiology 45:44–49

    CAS  PubMed  Google Scholar 

  66. Cha S, Lupo JM, Chen MH et al (2007) Differentiation of glioblastoma multiforme and single metastasis by peak heght and percentage of signal intensity recovery derived from susceptibility-weighted contrast enhanced perfusion MR imaging. AJNR 28:1078–1084

    CAS  PubMed  Google Scholar 

  67. Long DM (1979) Capillary ultrastructure in human metastatic brain tumors. J Neurosurg 51:53–58

    CAS  PubMed  Google Scholar 

  68. Davis PC, Friedman NC, Fry SM, Maldo JA, Hoffman JC, Braun IF (1987) Leptomeningeal metastasis: MR imaging. Radiology 163:449–454

    CAS  PubMed  Google Scholar 

  69. Yousem DM, Patrone MP, Grossman RI (1990) Lepto­meningeal metastasis: MR evaluation. J Comput Assist Tomogr 14:255–261

    CAS  PubMed  Google Scholar 

  70. Sze G (1993) Diseases of the intracranial meninges: MR imaging features. AJR 160:727–733

    CAS  PubMed  Google Scholar 

  71. Paako E, Patronas NJ, Schellinger D (1990) Meningeal Gd-DTPA enhancement in patients with malignancies. J Comput Assist Tomogr 14:542–546

    Google Scholar 

  72. Phillips ME, Ryals TJ, Kambhu SA, Yuh WTC (1990) Neoplastic vs inflammatory meningeal enhancement with Gd-DTPA. J Comput Assist Tomogr 14:536–541

    CAS  PubMed  Google Scholar 

  73. Hustinx R, Alavi A (1999) SPECT and PET imaging of brain tumors. Neuroimaging Clin North Am 9(4):751–765

    CAS  Google Scholar 

  74. Reba RC, Holman BL (1991) Brain perfusion radiotracers. In: Diksie M, Reba RC (eds) Radiopharmaceuticals and brain pathology studied with PET and SPECT. CRC, Boston, pp 35–65

    Google Scholar 

  75. Neurinckx RD, Canning LR, Piper IM et al (1987) Technitium-99m d, 1-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 27:191–202

    Google Scholar 

  76. Biersack HJ, Grunwald F, Kropp J (1991) Single photon emission computed tomograph imaging of the brain tumors. Semin Nucl Med 21:2–10

    CAS  PubMed  Google Scholar 

  77. Kim KT, Black KL, Marciano D et al (1990) Thalium-201 SPECT imaging of brain tumors; methods and results. J Nucl Med 31:965–969

    CAS  PubMed  Google Scholar 

  78. Black KL, Hawkins RA, Kim KT et al (1989) Use of thallium-201 SPECT to quantutate malignancy grade of gliomas. J Neurosurg 71:342–346

    CAS  PubMed  Google Scholar 

  79. Ueda T, Kaji Y, Wakisaka S et al (1993) Time sequential single photon emission computed tomography studies in brain tumor using thallium-201. Eur J Nucl Med 20:138–145

    CAS  PubMed  Google Scholar 

  80. Dierckx RA, Martin JJ, Dobbelieir A, Crols R, Neetens I, De Deyn PP (1994) Sensitivity and specificity of thalium-201 single-photon emission tomography in the functional detection and differential diagnosis of brain tumors. Eur J Nucl Med 21:621–633

    CAS  PubMed  Google Scholar 

  81. Schwartz RB, Calvaho PA, Alexander ED et al (1991) Radiation necrosis vs high grade glioma: differentiation by using dual-isotope SPECT with 201Th and 99m Tc-HMPAO. AJNR Am J Neuroradiol 12:1187–1192

    CAS  PubMed  Google Scholar 

  82. Lorberboym M, Mandell LR, Mosesson RE et al (1997) The role of thallium-201 uptake and retention in intracranial tumors after radiotherapy. J Nucl Med 38:223–226

    CAS  PubMed  Google Scholar 

  83. Kosuda S, Fujii H, Aoki S et al (1994) Prediction of survival in patients with suspected recurrent cerebral tumors by quantitative thallium-201 single photon emission computed tomography. Int J Radiat Oncol Biol Phys 30:1201–1206

    CAS  PubMed  Google Scholar 

  84. Vertosick FT Jr, Selker RG, Grossman SJ (1994) Correlation of thallium-201 single photon emission computed tomography and survival after treatment failure in patients with glioblastoma multiforme. Neurosurgery 34:396–401

    PubMed  Google Scholar 

  85. Yoshii Y, Satou M, Yamamoto T et al (1993) The role of thalium-201 single photon emission tomography in the investigation and characterization of brain tumors in man and their response to treatment. Eur J Nucl Med 20:39–45

    CAS  PubMed  Google Scholar 

  86. Hirano T, Otake H, Kazama K et al (1997) Technetium-99m (V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. J Nucl Med 38:1741–1749

    CAS  PubMed  Google Scholar 

  87. Langen KJ, Coenen HH, Roosen N et al (1990) SPECT studies of brain tumors with L-3-(123I) iodo-alpha-methyl tyrosine: correlation with PET 124IMT and first clinical results. J Nucl Med 31:281–286

    CAS  PubMed  Google Scholar 

  88. Kuwert T, Morgeroth C, Woesler B et al (1996) Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 23:1345–1353

    CAS  PubMed  Google Scholar 

  89. Andrews DW, Das R, Kim S et al (1997) Technitium- MIBI as a glioma imaging agent for the assessment of multi-drug resistance. Neurosurgery 40:1323–1332

    CAS  PubMed  Google Scholar 

  90. Yokogami K, Kawano H, Moriyama T et al (1998) Applications of SPECT using technitium-99m sestamibi in brain tumors and comparison with expression of MDR-1 gene: Is it possible to predict the response to therapy in patients with gliomas by means of 99mTc-sestamibi SPECT? Eur J Nucl Med 25:401–409

    CAS  PubMed  Google Scholar 

  91. Sokoloff L, Reivich M, Kennedy C et al (1977) The (14C) deoxyglucose method for the measurement of local ­cerebral glucose utilization: theory, procedure, and normal ­values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    CAS  PubMed  Google Scholar 

  92. Di Chiro G, De LaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by (18F) fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  Google Scholar 

  93. Patronas NJ, Di Chiro G, Kufta C et al (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62:816–822

    CAS  PubMed  Google Scholar 

  94. Alavi JB, Alavi A, Chawluk J et al (1988) Positron emission tomography in patients with glioma: a predictor of prognosis. Cancer 62:1074–1078

    CAS  PubMed  Google Scholar 

  95. Barker FG II, Chang SM, Valk PE et al (1997) 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115–126

    CAS  PubMed  Google Scholar 

  96. Holzer T, Herholz K, Jeske J et al (1993) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogra 17:681–687

    CAS  Google Scholar 

  97. Griffeth JK, Rich KM, Dehdashti F et al (1993) Brain metastasis from non-central nervous system tumors: evaluation with PET. Radiology 186:37–44

    CAS  PubMed  Google Scholar 

  98. Lassen U, Andersen P, Daugaard G et al (1998) Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography. Clin Cancer Res 4(11):2591–2597

    CAS  PubMed  Google Scholar 

  99. Ericson K, Kihlstrom L, Morgard J et al (1996) Positron emission tomography using 18F-fluorodeoxyclucose in patients with steriotactically irradiated brain metastases. Stereotact Funct Neurosurg 66(suppl 1):214–224

    PubMed  Google Scholar 

  100. Ogawa T, Shishido F, Kanno I et al (1993) Cerebral glioma; evaluation with methionine PET. Radiology 186:45–53

    CAS  PubMed  Google Scholar 

  101. Borght TV, Pauwels S, Lambotte L et al (1994) Brain tumor imaging with PET and 2-(carbon-11) thymidine. J Nucl Med 35:974–982

    Google Scholar 

  102. Pruim J, Willemsren ATM, Molenaar WM et al (1995) Brain tumors: L-(1-C-11)tyrosine PET for visualization and qualification of protein synthesis rate. Radiology 197:221–226

    CAS  PubMed  Google Scholar 

  103. Lammertsma AA, Ito M, McKenzie CG et al (1981) Quantitative tomographic measurements of regional cerebral flow and oxygen utilization in patients with brain tumors using oxygen-15 and positron emission tomography. J Cereb Blood Flow Metab 1(suppl 1):S567–S568

    Google Scholar 

  104. Jones T, Chesler DA, Ter-Pogossian MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49:339–343

    CAS  PubMed  Google Scholar 

  105. Frackoviak R, Lenzi G, Jones T et al (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values. J Comp Assist Tomogr 4:727–736

    Google Scholar 

  106. Ito M, Lammertsma AA, Wise RJ et al (1982) Measurement of regional cerebral bloodflow and oxygen utilization in patients with cerebral tumors using 15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiology 23:63–74

    CAS  PubMed  Google Scholar 

  107. Ogawa T, Uemura K, Shishido F et al (1988) Changes of cerebral blood flow, and oxygen and glucose metabolism following radiochemotherary of gliomas: a PET study. J Comput Assist Tomogr 12:290–297

    CAS  PubMed  Google Scholar 

  108. Mineura K, Sasajima T, Kowada M et al (1994) Perfusion and metabolism in predicting the survival of patients with malignant gliomas. Cancer 72:2386–2394

    Google Scholar 

  109. Jackson EF (1992) In vivo magnetic resonance spectroscopy in humans: a brief review. Am J Physiol Imaging 314:146–154

    Google Scholar 

  110. Meyerhoff DJ, MacKay s, Baker A, Schaefer S, Weiner MW (1992) Magnetic rasonance spectroscopy. In: Higgins CB, Hricak H, Helms CA (eds) Magnetic resonance imaging of the body, 2nd edn. Raven, New York, pp 287–302

    Google Scholar 

  111. Preul MC, Caramanos Z, Collins DL et al (1996) Acurate noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2:323–325

    CAS  PubMed  Google Scholar 

  112. Fulham MJ, Bizzi A, Dietz MJ et al (1992) Mapping of brain metabolites with proton MR spectroscopic imaging; clinical relevance. Radiology 185:675–686

    CAS  PubMed  Google Scholar 

  113. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324

    CAS  PubMed  Google Scholar 

  114. Lee PL, Gonzalez RG (2000) Magnetic resonance spectroscopy of brain tumors. Curr Opin Oncol 12(3):199–204

    CAS  PubMed  Google Scholar 

  115. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity and predictive values of perfusion MR imaging and proton spectroscopic imaging compared with conventional MR imaging. AJNR 24:1989–1998

    PubMed  Google Scholar 

  116. Astrakas LG, Zurakowski D, Tzika AA et al (2004) Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict clinical grade of pediatric brain tumors. Clin Cancer Res 10:8220–8228

    CAS  PubMed  Google Scholar 

  117. Sijens PE, Knop MV, Brunetti A et al (1995) 1H MR Spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med 33:818–826

    CAS  PubMed  Google Scholar 

  118. Sijens PE, Levendag PC, Vecht CJ et al (1996) 1H MR spectrocopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed 9(2):65–71

    CAS  PubMed  Google Scholar 

  119. Poptani H, Rakesh K, Roy R et al (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol 16:1593–1603

    CAS  PubMed  Google Scholar 

  120. Kugel H, Heindel W, Ernestus RI, Bunke J, du Mesnil R, Friedman G (1992) Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 183:701–709

    CAS  PubMed  Google Scholar 

  121. Tate AR, Majos C, Moreno A et al (2003) Automated classification of short echo time in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 49:29–36

    CAS  PubMed  Google Scholar 

  122. Devos A, Lukas L, Suykens JA et al (2004) Classification of brain tumors using short echo time 1H MR spectra. J Magn Reson 170:164–175

    CAS  PubMed  Google Scholar 

  123. Opstad KS, Murphy MM, Wilkins PR et al (2004) Differentiation of metastases from high grade-gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 20:187–192

    PubMed  Google Scholar 

  124. Burtscher IM, Skagerberg G, Geijer B et al (2000) Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR 21:84–93

    CAS  PubMed  Google Scholar 

  125. Lichy MP, Henze M, Plathow C et al (2004) Matabolic imaging to follow stereotactic radiation gliomas – the role of 1H spectroscopy in comparison to FDG-PET and IMT-SPECT. ROFO 176:126–134

    Google Scholar 

  126. Plotkin M, Eisenacher J, Bruhn H et al (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 70:49–58

    PubMed  Google Scholar 

  127. Taylor JS, Langston JW, Reddick WE et al (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36:1251–1261

    CAS  PubMed  Google Scholar 

  128. Chan YL, Yeung DK, Leung SF, Cao G (1999) Proton magnetic resonance spectroscopy of late delayed radiation-induced injury to the brain. J Magn Reson Imaging 19:130–137

    Google Scholar 

  129. Warren KE, Frank JA, Black JL et al (2000) Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol 18(8):1020–1026

    CAS  PubMed  Google Scholar 

  130. Smirniotopoulos JG, Olmsted WW (1994) Primary and secondary neoplasms of the skull. In: Putman CE, Ravin CE (eds) Textbook of diagnostic imaging. WB Saunders, Philadelphia, pp 106–125

    Google Scholar 

  131. Atlas SW (1990) Adult supratentorial tumors. Semin Roentgenol 25:130–154

    CAS  PubMed  Google Scholar 

  132. Smirniotopoulos JG, Rushing EJ, Mena H (1992) Pineal region masses: differential diagnosis. Radiographics 12:577–596

    CAS  PubMed  Google Scholar 

  133. Johnsen DE, Woodruff WW, Alen IS et al (1991) MR imaging of the sellar and juctasellar regions. Radiographics 11:727–758

    CAS  PubMed  Google Scholar 

  134. Chong BW, Newton TH (1993) Hypothalamic and pituitary pathology. Radiol Clin North Am 31:1147–1183

    CAS  PubMed  Google Scholar 

  135. Seltzer S, Mark AS, Atlas SW (1991) CNS sarcoidosis: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol 12:1227–1233

    CAS  PubMed  Google Scholar 

  136. Zimmerman RD, Weingarten K (1991) Neuroimaging of cerebral abscesses. Neuroimaging Clin North Am 1:1–16

    Google Scholar 

  137. Bazan C III, Rinaldi MG, Rauch RR, Jinkins IR (1991) Fungal infections of the brain. Neuroimag Clin North Am 1:57–88

    Google Scholar 

  138. De Castro CC, Hesselink JR (1991) Tuberculosis. Neuro­imaging Clin North Am 1:119–139

    Google Scholar 

  139. Bryan RN, Levy NM, Whitlow WD, Killian JM, Preziosi TJ, Rosario JA (1991) Diagnosis of acute cerebral infarction: comparison of CT and MR imaging. AJNR Am J Neuroradiol 12:611–620

    CAS  PubMed  Google Scholar 

  140. Warach S, Gaa J, Siewert B, Wielopolski P, Delman RR (1995) Acute stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37:231–241

    CAS  PubMed  Google Scholar 

  141. Loubinoux I, Volk A, Borredon J et al (1997) Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. Stroke 28:419–426

    CAS  PubMed  Google Scholar 

  142. Castillo M, Smith JK, Kwock L, Wilber K (2001) Apparent diffusion coefficient in the evaluation if high grade gliomas. AJNR Am J Neuroradiol 22:60–64

    CAS  PubMed  Google Scholar 

  143. Drake C, Peerless SJ (1997) Giant fusiform intracranial aneurysms; review of 120 patients treated surgically from 1965 to 1992. J Neurosurg 87:141–162

    CAS  PubMed  Google Scholar 

  144. Patronas NJ, Di Chiro G, Brooks RA et al (1982) (18F) Fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144:885–889

    CAS  PubMed  Google Scholar 

  145. Mogard J, Kihlstrom L, Ericson K et al (1994) Recurrent tumor vs radiation effect after gamma knife radiosurgery of intracerebral metastases; diagnosis with PET-FDG. J Comp Assist Tomogr 18:177–181

    CAS  Google Scholar 

  146. Virta A, Patronas N, Raman R et al (2000) Spectroscopic imaging of radiation-induced effects in the white matter of glioma patients. Magn Reson Imaging 18:815–857

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Patronas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patronas, N.J. (2011). Brain Metastasis. In: Drevelegas, A. (eds) Imaging of Brain Tumors with Histological Correlations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87650-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87650-2_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87648-9

  • Online ISBN: 978-3-540-87650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics