Parallel Monte-Carlo Tree Search

  • Guillaume M. J. -B. Chaslot
  • Mark H. M. Winands
  • H. Jaap van den Herik
Conference paper

DOI: 10.1007/978-3-540-87608-3_6

Volume 5131 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Chaslot G.M.J.B., Winands M.H.M., van den Herik H.J. (2008) Parallel Monte-Carlo Tree Search. In: van den Herik H.J., Xu X., Ma Z., Winands M.H.M. (eds) Computers and Games. CG 2008. Lecture Notes in Computer Science, vol 5131. Springer, Berlin, Heidelberg

Abstract

Monte-Carlo Tree Search (MCTS) is a new best-first search method that started a revolution in the field of Computer Go. Parallelizing MCTS is an important way to increase the strength of any Go program. In this article, we discuss three parallelization methods for MCTS: leaf parallelization, root parallelization, and tree parallelization. To be effective tree parallelization requires two techniques: adequately handling of (1) local mutexes and (2) virtual loss. Experiments in 13×13 Go reveal that in the program Mango root parallelization may lead to the best results for a specific time setting and specific program parameters. However, as soon as the selection mechanism is able to handle more adequately the balance of exploitation and exploration, tree parallelization should have attention too and could become a second choice for parallelizing MCTS. Preliminary experiments on the smaller 9×9 board provide promising prospects for tree parallelization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guillaume M. J. -B. Chaslot
    • 1
  • Mark H. M. Winands
    • 1
  • H. Jaap van den Herik
    • 1
  1. 1.Games and AI Group, MICC, Faculty of Humanities and SciencesUniversiteit MaastrichtMaastrichtThe Netherlands