Skip to main content

Extensional Uniformity for Boolean Circuits

  • Conference paper
Computer Science Logic (CSL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5213))

Included in the following conference series:

  • 549 Accesses

Abstract

Imposing an extensional uniformity condition on a non-uniform circuit complexity class \(\mathcal{C}\) means simply intersecting \(\mathcal{C}\) with a uniform class \(\mathcal{L}\). By contrast, the usual intensional uniformity conditions require that a resource-bounded machine be able to exhibit the circuits in the circuit family defining \(\mathcal{C}\). We say that \((\mathcal{C},\mathcal{L})\) has the Uniformity Duality Property if the extensionally uniform class \(\mathcal{C}\cap\mathcal{L}\) can be captured intensionally by means of adding so-called \(\mathcal{L}\) -numerical predicates to the first-order descriptive complexity apparatus describing the connection language of the circuit family defining \(\mathcal{C}\).

This paper exhibits positive instances and negative instances of the Uniformity Duality Property.

Supported in part by DFG VO 630/6-1, by the NSERC of Canada and by the (Québec) FQRNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: P-uniform circuit complexity. Journal of the Association for Computing Machinery 36, 912–928 (1989)

    MATH  MathSciNet  Google Scholar 

  2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. of the 16th Annual ACM Symposium on Theory of Computing, pp. 202–211 (2004)

    Google Scholar 

  3. Mix Barrington, D.A., Immerman, N.: Time, hardware, and uniformity. In: Proceedings 9th Structure in Complexity Theory, pp. 176–185. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  4. Mix Barrington, D.A., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.: First-order expressibility of languages with neutral letters or: The Crane Beach Conjecture. Journal of Computer and System Sciences 70, 101–127 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1. Journal of Computer and System Sciences 41(3), 274–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Behle, C., Lange, K.-J.: FO[<]-Uniformity. In: Proceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC 2006), pp. 183–189 (2006)

    Google Scholar 

  7. Berstel, J.: Transductions and Context-Free Languages. Leitfäden der angewandten Mathematik und Mechanik LAMM, vol. 38. Teubner (1979)

    Google Scholar 

  8. Borodin, A.: On relating time and space to size and depth. SIAM Journal on Computing 6, 733–744 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  10. Ginsburg, S., Greibach, S., Hopcroft, J.: Abstract families of languages. Memoirs of the Amer. Math. Soc. 87 (1969)

    Google Scholar 

  11. Ibarra, O., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages in NC1. Information Processing Letters 29, 111–117 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Immerman, N.: Expressibility and parallel complexity. SIAM Journal on Computing 18, 625–638 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karp, R., Lipton, R.: Turing machines that take advice. L’enseignement mathématique 28, 191–209 (1982)

    MATH  MathSciNet  Google Scholar 

  14. Lange, K.-J.: Complexity theory and formal languages. In: Dassow, J., Kelemen, J. (eds.) IMYCS 1988. LNCS, vol. 381, pp. 19–36. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  15. Lange, K.-J.: Some results on majority quantifiers over words. In: 19th IEEE Conference on Computational Complexity, pp. 123–129 (2004)

    Google Scholar 

  16. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive complexity approach to LOGCFL. Journal of Computer and Systems Sciences 62(4), 629–652 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)

    MathSciNet  Google Scholar 

  18. Liu, L., Weiner, P.: An infinite hierarchy of intersections of context-free languages. Mathematical Systems Theory 7, 185–192 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ruzzo, W.L.: On uniform circuit complexity. Journal of Computer and Systems Sciences 21, 365–383 (1981)

    Article  MathSciNet  Google Scholar 

  20. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Transactions on Computational Logic 6(3), 634–671 (2005)

    Article  MathSciNet  Google Scholar 

  21. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  22. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)

    Google Scholar 

  23. Wotschke, D.: The Boolean closure of the deterministic and nondeterministic context-free languages. In: GI 1973. LNCS, vol. 1, pp. 113–121. Springer, Heidelberg (1973)

    Google Scholar 

  24. Wrathall, C.: Rudimentary predicates and relative computation. SIAM Journal on Computing 7(2), 194–209 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Kaminski Simone Martini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McKenzie, P., Thomas, M., Vollmer, H. (2008). Extensional Uniformity for Boolean Circuits. In: Kaminski, M., Martini, S. (eds) Computer Science Logic. CSL 2008. Lecture Notes in Computer Science, vol 5213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87531-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87531-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87530-7

  • Online ISBN: 978-3-540-87531-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics