Skip to main content

Astrobiological Aspect of Chemolithoautotrophic Bacterial Activity in the Role of Black Shale-Hosted Mn Mineralization and Cathodoluminescence Study of High Mn-Bearing Carbonates

  • Chapter
Cathodoluminescence and its Application in the Planetary Sciences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asada R, Tazaki K (2000) Observation of bio-kaolinite clusters. Clay Science, Japan 40:24–37

    Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  • Bargar JR, Tebo BM, Bergmann U, Webb SM, Glatzel P, Chiu VQ, Villalobos M (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. Strain SG-1. Am Mineral 90:143–154

    Article  Google Scholar 

  • Beveridge TL (1989) Metal ions and bacteria. In: Beveridge TL, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 1–29

    Google Scholar 

  • Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN, Crossey LJ, Schelble RT (2001) Cave biosignature suites: microbes, minerals, and Mars. Astrobiology 1:25–55

    Article  Google Scholar 

  • Chapnick S, Moore WS, Nealson KH (1982) Microbially mediated manganese oxidation in a freshwater lake. Limnol Oceanogr 17:1004–1014

    Google Scholar 

  • Chukrov FV, Drits VA, Gorschkov AI, Sakharov BA, Dikov YP (1987) Structural models of vernadite. Int Geol Rev 29:1337–1347

    Article  Google Scholar 

  • Cowen JP, Massoth GJ, Baker ET (1986) Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322:169–171

    Article  Google Scholar 

  • Cseh Németh J, Grasselly Gy (1966) Data on the geology and mineralogy of the manganese ore deposit of Ürküt II. Acta Miner Petr Univ Szegediensis 17: 2, 89–114

    Google Scholar 

  • Cseh Németh J, Grasselly Gy, Szabó Z (1980) Sedimentary manganese deposits of Hungary. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese II. Akadémiai Kiadó, Budapest pp 199–221

    Google Scholar 

  • Davies SHR, Morgan JJ (1989) Manganese (II) oxidation kinetics on metal oxide surfaces. J Colloid Inter Sci 129: 63–77

    Article  Google Scholar 

  • Denson J, Ivey DM, Sears DWG, GucsikA, Vidéki R (2007) Cathodoluminescence and its application for biosignature analysis of Mn-containing biogenic minerals: a review. Lunar Planet Sci XXXVIII 1009.pdf

    Google Scholar 

  • Edenborn HM, Paquin Y, Chateauneuf G (1985) Bacterial contribution to manganese oxidation in a deep coastal sediment. Estuar Coast Shelf Sci 21: 6 801–815

    Article  Google Scholar 

  • Ehrlich HL (1990) Geomicrobiology. 2nd edn. M. Dekker, New York

    Google Scholar 

  • Ehrlich HL (1999) Microbes as geologic agents: Their role in mineral formation. Geomicro J 16:135–153

    Article  Google Scholar 

  • El Ali A, Barbin V, Calas G, Cervelle B, Ramseyer K, Bouroulec J (1993) Mn2+-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104:189–202

    Article  Google Scholar 

  • Emerson S, Kalhorn S, Jacobs L, Tebo BM, Nealson KH, Rosson RA. (1982) Environmental oxidation rate of manganese(II) – bacterial catalysis. Geochim Cosmochim Acta 46:6 1073–1079

    Article  Google Scholar 

  • Fan D, Yang P, Wang R (1999) Characteristics and origin of the Middle Proterozoic Dongshuichang chambersite deposit, Jixian, Tianjin, China. Ore Geol Rev 15:15–29

    Article  Google Scholar 

  • Farkas L, Bolzenius BH, Schäfer, W, Will G (1988) The crystal structure of kutnohorite CaMn(CO3)2. Neues Jb Miner Monat 12: 539–546

    Google Scholar 

  • Ferris FG, Beveridge TG, Fyfe WS (1986) Iron-silica crystallite nucleation by bacteria in geothermal sediment. Nature 320:609–611

    Article  Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1987a) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63: 225–232

    Article  Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1987b) Manganese oxide deposition in a hot spring microbial mat. Geomicrobiol J 5:33–42

    Google Scholar 

  • Fortin D (2004) What biogenic minerals tell us. Science 303:1618–1619

    Article  Google Scholar 

  • Frondel C, Bauer L (1955) Kutnahorite: A manganese dolomite: CaMn(CO3)2. Am Mineral 40:748–760

    Google Scholar 

  • Gaft M, Gorobets B, Naumova I, Mironova N, Grinvald G (1981) Correlation of luminescent properties with the crystallography of manganese minerals (in Russian). Mineralogiceskij Zurnal 3:80–90

    Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2005) Modern luminescence spectroscopy of minerals and materials. Springer Verlag, Berlin

    Google Scholar 

  • Géczy B (1973) The origin of the Jurassic faunal provinces and the Mediterranean plate tectonics. Ann Univ Sci R Eótvós (Budapest) Sect Geol 16: 99–114

    Google Scholar 

  • Geesey GG, Jang L (1989) Intractions between metal ions and capsular polymers. In: Beveridge TL, Doyle RJ (eds) Metal ions and bacteria. Wiley, New York, pp 325–357

    Google Scholar 

  • Giovanoli R (1980) On natural and synthetic Mn nodules. In: Varentsov IM, Grasselly Gy (eds) Geology and geochemistry of manganese I. Akadémiai Kiadó, Budapest pp 159–202

    Google Scholar 

  • Gorobec B, Gaft M, Laverova L (1978) Photoluminescence of manganese minerals (in Russian). J Appl Spectrosc 28:750–752

    Article  Google Scholar 

  • Haberman D, Neuser RD, Richter DK (2000) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminesce in geosciences. Springer Verlag, Berlin, pp 331–358

    Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science 24:302, 618–622

    Article  Google Scholar 

  • Hazen RM (2005) Genesis: Rocks, minerals, and the geochemical origin of life. Elements 1:135–137

    Article  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100ˆC by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  Google Scholar 

  • Krumbein WE (1983) Microbial geochemistry. Blackwell Scientific Publications, Alden Press, Oxford

    Google Scholar 

  • Lanson B, Drits VA, Silwester E, Manceau A (2000) Sructure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral 85:826–838

    Google Scholar 

  • Larsen I, Little B, Nealson KH, Ray R, Stone A, Tian J (1998) Manganite reduction by Shewanella putrefaciens MR-4. Am Mineral 83:1564–1572

    Google Scholar 

  • Lumsen DN, Lloyd RV (1984) Mn(II) partitioning between calcium and magnesium sites in studies of dolomite origin. Geochim Cosmochim Acta 48:1861–1865

    Article  Google Scholar 

  • Machel HG (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in Geosciences. Springer Verlag, Berlin, pp 271–301

    Google Scholar 

  • Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Barker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Society of sedimentary geologists, Short Course 25, pp 9–25

    Google Scholar 

  • Mandernack KW, Post J, Tebo BM (1995) Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: Evidence for the direct oxidation of Mn(II) to Mn(IV). Geochim Cosmochim Acta 59:4393–4408

    Article  Google Scholar 

  • Mandernack KW, Tebo BM (1993) Manganese scavenging and oxidation at hydrothermal vents in vent plumes. Geochim Cosmochim Acta 57:3907–3923

    Article  Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centres in minerals. Springer, Berlin

    Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin-Hyman, Boston

    Google Scholar 

  • Mason RA (1987) Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. Chem Geol 64: 209–224

    Article  Google Scholar 

  • Mason RA, Mariano AN (1990) Cathodoluminescence activation in manganese-bearing and rare earth-bearing synthetic calcites. Chem Geol 88:191–206

    Article  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on mars: Possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  Google Scholar 

  • Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solution. Geochim Cosmochim Acta 69:1 35–48

    Article  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318

    Article  Google Scholar 

  • Neuser RD (1995) A new high-intensity cathodoluminescence microscope and its application to weakly luminescing minerals. Bochumer Geol Geotech Arb 44:116–118

    Google Scholar 

  • Okita PM (1988) Geochemistry and mineralogy of the molango manganese orebody, Hidalgo State, Mexico. Ph.D. Thesis, Cincinatti University

    Google Scholar 

  • Peacor D, Essene E, Gaines A (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite [CaMn(CO3)2]. – Am Mineral 72:319–328

    Google Scholar 

  • Polgári M (1993) Manganese geochemistry reflected by black shale formation and diagenetic processes – Model of formation of the carbonatic manganese ore of Ürküt. Spec series Hung Geol Inst Karpati Publish House, Ushgorod

    Google Scholar 

  • Polgári M, Bajnóczi B, Kovács Kis V, Gótze J, Dobosi G, Tóth M, Vigh T (2007b) Mineralogical and cathodoluminescence characteristics of Ca-rich kutnohorite from the Ürküt Mn-carbonate mineralization, Hungary. Mineral Mag 71:5 493–508

    Article  Google Scholar 

  • Polgári M, Dobosi G, Horváth P, Rálisch-Felgenhauer E, Vigh T. (2003b) As-bearing pyrite occurrence at Ürküt and in the Jurassic layers of the Iharosberény-I drillcore. Bull Hung Geol Soc 133:4 469–475

    Google Scholar 

  • Polgári M, Hein JR, Tóth M, Vigh T, Bíró L (2007a) Did hydrothermal fluids contribute to the Huge Ürküt Carbonate ore Body? Geochim Cosmochim Acta Suppl Abst Vol A801

    Google Scholar 

  • Polgári M, Okita PM, Hein JR (1991) Stable Isotope Evidence for the Origin of the Ürküt Manganese Ore Deposit, Hungary. J Sed Petr 61:3 384–393

    Google Scholar 

  • Polgári M, Philippe M, Szabó-Drubina M, Tóth M (2005) Manganese-impregnated wood from a Toarcian manganese ore deposit, Eplény Mine, Bakony Mts, Transdanubia, Hungary. Neues Jb Geol Paläont Monat 3:175–192

    Google Scholar 

  • Polgári M, Szabó Z, Szederkényi T (eds) (2000) Manganese Ores in Hungary – In commemoration of professor Gyula Grasselly - Mangánércek Magyarországon – Grasselly Gyula akadémikus emlékére. Regional Committee Hung Acad Sci Juhász Publish House, Szeged

    Google Scholar 

  • Polgári M, Szabó-Drubina M, Abonyi Tóth Zs (2006b) Role of hydrothermal supply and bacterial metal enrichment effects in black shale hosted Mn-carbonate mineralization, Ürküt, Hungary, Europe. 12th IAGOD Congr Moscow, Russia, Abst CD ROM

    Google Scholar 

  • Polgári M, Szabó-Drubina M, Szabó Z (2004) Theoretical model for the Mid-European Jurassic Mn-carbonate mineralization Ürküt, Hungary. Bull Geosci Czech Geol Surv 79:1 53–61

    Google Scholar 

  • Polgári M, Szabó-Drubina M, Tóth M, Szabó Z, Abonyi Tóth Zs (2003a) Submarine primary Sr-rich Mn-oxide mineralization in the Jurassic Transdanubian Range (Hungary). In: DG Eliopoulos et al. (eds) Proc 7th Biennial SGA Meet Athens, Greece, Millpress Rotterdam pp 1233–1236

    Google Scholar 

  • Polgári M, Tazaki K, Watanabe H, Vigh T, Gucsik A (2006a) Geochemical aspect of chemolithoautotrophic bacterial activity in the role of black shale hosted Mn mineralization, Jurassic age, Hungary, Europe. Clay Sci 12(Suppl 2):233–239

    Google Scholar 

  • Reeder R (1983) Crystal chemistry of the rhombohedral carbonates. In: Carbonates. Mineralogy and chemistry. Miner Soc Am Rev Mineral 11:1–47

    Google Scholar 

  • Reynolds RC Jr (1989) Diffraction by Small and Disordered Crystals. In: Bish DL, Post JE (eds) Modern powder diffraction. Mineral Soc Am Rev Miner Washington DC 20:145–182

    Google Scholar 

  • Richter DK, Gótte T, Gótze J, Neuser RD (2003) Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineral Petrol 79:127–166

    Article  Google Scholar 

  • Roy S (1981) Manganese deposits. Academic Press, London

    Google Scholar 

  • Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1987) Microbial oxidation of manganese in a North-Carolina Estuary. Limnol Oceanogr 32:3 552–564.

    Google Scholar 

  • Sung W, Morgan JJ (1981) Oxidative removal of Mn(II) from solution catalyzed by the γ-FeOOH (lepidocrocite) surface. Geochim Cosmochim Acta 45:2377–2383

    Article  Google Scholar 

  • Szabó Z, Grasselly Gy, Cseh Németh J (1981) Some conceptual questions regarding the origin of manganese in the Ürküt Deposit, Hungary. Chem Geol 34: 19–29

    Google Scholar 

  • Szabó-Drubina M (1959) Manganese deposits of Hungary. Econ Geol 54:1078–1093

    Google Scholar 

  • Tashiro Y, Tazaki K (1999) The primitive stage of microbial mats comprising iron hydroxides. Earth Sci 53: 27–35

    Google Scholar 

  • Tazaki K (1997) Biomineralization of layer silicates and hydrated Fe/Mn oxides in microbial mats: An electron microscopical study. Clays and Clay Miner 45:203–212

    Article  Google Scholar 

  • Tazaki K (2000) Formation of banded iron-manganese structures by natural microbial communities. Clays Clay Miner 48:511–520

    Article  Google Scholar 

  • Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black-Sea. Deep Sea Res A. Oceanograph Res Papers Suppl 2 38:S883–S905

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Manganese biooxides: properties and mechanisms of formation. Ann Rev Earth Planet Sci 32:287–328

    Article  Google Scholar 

  • Tebo BM, Ghiorse WC, Van Waasbergen LGV, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: Insights into manganese (II) Oxidation from molecular genetic and biochemical studies. In: Nealson KH, Banfield JF (eds) Geomicrobiology: Interactions between microbes and minerals. Miner Soc Am Washington DC 35: pp 225–266

    Google Scholar 

  • Tebo BM, Nealson KH, Emerson S, Jacobs L (1984) Microbial mediation of Mn(II) and Co(II) precipitation at the O2/H2S interfaces in 2 anoxic fjords. Limnol Oceanogr 29(6):1247–1258

    Article  Google Scholar 

  • Tebo BM, Nealson KH, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of mangane. Adv Appl Microbiol 33:279–318

    Article  Google Scholar 

  • Theng BKG, Orchard VA (1995) Interactions of clays with microorganisms and bacterial survival in soil: A physicochemical perspective. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interactions. CRC Press, Florida, 3:123–139

    Google Scholar 

  • Tipping E, Hetherington NB, Hilton J, Thompson DW, Bowles E, Hamilton Taylor J (1985) Artifacts in the use of selective chemical-extraction to determine distributions of metals between oxides of manganese and iron. Anal Chem 57(9): 1944–1946

    Article  Google Scholar 

  • Ueshima U, Mogi K, Tazaki K (2000) Microbes associated with bentonite. Clay Sci 39:171–183

    Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67:2649–2662

    Article  Google Scholar 

  • Vórós A, Galácz A (1998) Jurassic palaeogeography of the Transdanubian Central Range (Hungary). Rivista Italiana di Paleontol Stratigr 104:69–84

    Google Scholar 

  • Walker G, Abumere OE, Kamaluddin B (1989) Luminescence spectroscopy of Mn2+ centres in rockforming carbonates. Miner Mag 53:201–211

    Article  Google Scholar 

  • Webb SM, Bargar JR, Dick GJ, Johnson HA, McCarthy JK, Tebo BM (2004) Insights into the mechanism of enzymatic manganese(II) oxidation by diverse bacterial species. Symposium on Bacterially Mediated Mn and Fe Oxidation in the Biosphere. Geochemistry Division Abstr 227th ACS National Meeting Am Chem Soc Anaheim, California, p 62

    Google Scholar 

  • Webb SM, Dick GJ, Bargar JR, Tebo BM (2005a) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Microbiol 102(15):5558–5563

    Google Scholar 

  • Webb SM, Tebo BM, Bargar JR (2005b) Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. Am Mineral 90(8–9):1342–1357

    Google Scholar 

  • Weiszburg TG, Tóth E, Beran A (2004) Celadonite, the 10-A green clay mineral of the manganese carbonate ore, Ürküt, Hungary. Acta Miner Petr Szeged 45:1 65–80

    Google Scholar 

  • Wilson DE (1980) Surface and complexation effects on the rate of Mn(II) oxidation in natural waters. Geochim Cosmochim Acta 44:1311–1317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Polgári, M. et al. (2009). Astrobiological Aspect of Chemolithoautotrophic Bacterial Activity in the Role of Black Shale-Hosted Mn Mineralization and Cathodoluminescence Study of High Mn-Bearing Carbonates. In: Gucsik, A. (eds) Cathodoluminescence and its Application in the Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87529-1_7

Download citation

Publish with us

Policies and ethics