Skip to main content

Physical Principles of Cathodoluminescence (CL) and its Applications in Geosciences

  • Chapter
Cathodoluminescence and its Application in the Planetary Sciences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Remond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) Cathodoluminescence in geosciences Springer Verlag, Berlin Heidelberg New York, pp. 127–160

    Google Scholar 

  • Brooks RJ, Finch AA, Hole DE, Townsend PD, Wu Z (2002) The red to near-infrared luminescence in alkali feldspar. Contrib Mineral Petrol 143:484–494

    Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. 2nd ed., Cambridge University Press, Cambridge, 551 p

    Google Scholar 

  • El Ali A, Barbin G, Cervelle B, Ramseyer K, Bouroulec J (1993) Mn2+-activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104:189–202

    Article  Google Scholar 

  • Evans J, Hogg AJC, Hopkins MS, Howarth RJ (1994) Quantification of quartz cements using combined SEM, CL, and image analysis. J Sediment Res A 64:334–338

    Google Scholar 

  • Finch, AA, Klein J (1999) The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petrol 135:234–243

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Shoval S, Champagnon B, Boulon G (1997) Eu3+ luminescence in high-symmetry sites of natural apatite. J Lum 72–74:572–574

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I, Champagnon B, Boulon G (2000a) Laser-induced Eu3+ luminescence in zircon ZrSiO4. J Lum 87–89:1032–1035

    Article  Google Scholar 

  • Gaft M, Boulon G, Panczer G, Guyot Y, Reisfeld R, Votyakov S, Bulka G (2000b) Unexpected luminescence of Cr5+ and Cr3+ ions in ZrSiO4 zircon crystals. J Lum 87–89:1118–1121

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Uspensky E (2001) Laser-induced time-resolved luminescence as a tool for rare-earth element identification in minerals. Phys Chem Minerals 28:347–363

    Article  Google Scholar 

  • Gaft M, Seigel H, Panczer G, Reisfeld R (2002) Laser-induced time-resolved luminescence spectroscopy of Pb2+ in minerals. Eur J Mineral 14:1041–1048

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G (2005) Luminescence spectroscopy of minerals and materials. Springer-Verlag Berlin, Heidelberg, 356 pp

    Google Scholar 

  • Gorobets BS, Rogojine AA (2002) Luminescent spectra of minerals. RPC VIMS, Moscow, 300p

    Google Scholar 

  • Götte T, Richter DK (2004) Quantitative high-resolution cathodoluminescence spectroscopy of smithsonite. Mineral Mag 68:199–207

    Article  Google Scholar 

  • Götze J, Magnus M (1997) Quantitative determination of mineral abundance in geological samples using combined cathodoluminescence microscopy and image analysis. Eur J Mineral 9:1207–1215

    Google Scholar 

  • Götze J, Zimmerle W (2000) Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions to Sedimentary Petrology 21, Schweizerbart’sche Verlagsbuchhandlung, Nögele and Obermiller, Stuttgart, 91 p

    Google Scholar 

  • Götze J, Kempe U (2008) A comparison of optical microscope (OM) and scanning electron microscope (SEM) based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineral Mag (submitted)

    Google Scholar 

  • Götze J, Habermann D, Neuser RD, Richter DK (1999a) High-resolution spectrometric analysis of REE-activated cathodoluminescence (CL) in feldspar minerals. Chem Geol 153:81–91

    Article  Google Scholar 

  • Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999b) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Mineral Mag 63:179–187

    Article  Google Scholar 

  • Götze J, Plötze M, Fuchs H, Habermann D (1999c) Defect structure and luminescence behaviour of agate - results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63:149–163

    Article  Google Scholar 

  • Götze J, Habermann D, Kempe U, Neuser RD, Richter DK (1999d) Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil (Luna20, Luna 24). Am Mineral 84:1027–1032

    Google Scholar 

  • Götze J, Krbetschek MR, Habermann D, Wolf D (2000) High-resolution cathodoluminescence studies of feldspar minerals. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin Heidelberg New York, pp. 245–270

    Google Scholar 

  • Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Mineral Petrol 71:225–250

    Article  Google Scholar 

  • Götze J, Plötze M, Götte T, Neuser RD, Richter DK (2002) Cathodoluminescence (CL) and Electron Paramagnetic Resonance (EPR) studies of clay minerals. Mineral Petrol 76:195–212

    Article  Google Scholar 

  • Habermann D, Neuser R, Richter DK (1998) Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art. Sed Geol 116:13–24

    Article  Google Scholar 

  • Habermann D, Meijer J, Neuser RD, Richter DK, Rolfs C, Stephan A (1999) Micro-PIXE and quantitative cathodoluminescence spectroscopy: Combined high resolution trace element analyses in minerals. Nucl Instr Methods Phys Res B 150:470–477

    Article  Google Scholar 

  • Habermann D, Neuser RD, Richter DK (2000a) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) Cathodoluminescence in geosciences. Springer Verlag, Berlin Heidelberg New York, pp. 5331–5358

    Google Scholar 

  • Habermann D, Götte T, Meijer J, Stephan A, Richter DK, Niklas JR (2000b) High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses. Nucl Instr Methods Phys Res B 161–163:846–851

    Article  Google Scholar 

  • Höger T, Dung PT (2003) Quantitative laser-induced photoluminescence and cathodoluminescence spectroscopy of natural and synthetic rubies. In: Hofmeister, W, Quang, VX, Dao, NQ, Nghi, T (eds) Geo- and material sciences on gem-minerals of Vietnam Proc 2nd Int workshop Hanoi, pp. 122–128

    Google Scholar 

  • Kempe U, Götze J (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66:135–156

    Article  Google Scholar 

  • Kempe U, Trinkler M, Wolf D (1991) Yttrium und die Seltenerdfotolumineszenz natĂĽrlicher Scheelite. Chem Erde 51:275–289

    Google Scholar 

  • Kempe U, Götze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits from Khaldzan Buregte (Mongolian Altai): Indications from a combined CL - SEM study. Mineral Mag 63:165–177

    Article  Google Scholar 

  • Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin, Heidelberg, New York, pp 425–456

    Google Scholar 

  • Kempe U, Plötze M, Brachmann A, Böttcher R (2002) Stabilisation of divalent rare earth elements in natural fluorite. Mineral Petrol 76:213–234

    Article  Google Scholar 

  • Krbetschek MR, Götze J, Dietrich A, Trautmann T (1998) Spectral information from minerals relevant for luminescence dating. Radiat Meas 27:695–748

    Article  Google Scholar 

  • Krbetschek MR, Götze J, Irmer G, Rieser U, Trautmann T (2002) The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca – composition Mineral Petrol 76:167–177

    Google Scholar 

  • Marfunin AS (1979) Spectroscopy, luminescence and radiation centres in minerals. Springer-Verlag, Berlin, 352p

    Google Scholar 

  • Marfunin AS (1995) Advanced Mineralogy Vol 2 – Methods and instrumentations: Results and recent developments. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Mariano AN, Ring PJ (1975) Europium-activated cathodoluminescence in minerals. Geochim Cosmochim Acta 39:649–660

    Article  Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin-Hyman, Boston, 146 p

    Google Scholar 

  • Marshall DJ (2004) Macrophotography of cathodoluminescence of mineral specimens. 32nd International Geological Congress, Florece, Italy, Abstracts, 576

    Google Scholar 

  • Medlin WL (1968) The nature of traps and emission centers in thermoluminescent rock materials. In: McDougall, DJ (ed) Thermoluminescence of geological materials. Academic Press, New York, pp 193–223

    Google Scholar 

  • Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sed Petrol 60:53–58

    Google Scholar 

  • Mikhail P, Hulliger J, Ramseyer K (1999) Cathodoluminescence and photoluminescence of Smn+ (n=2,3) in oxide environments. Solid State Commun 112:483–488

    Article  Google Scholar 

  • Morozov M, Trinkler M, Plötze M, Kempe U (1996) Spectroscopic studies on fluorites from Li-F and alkaline granitic systems in Central Kazakhstan. In: Shatov V, et al (eds) Granite-related ore deposits of Central Kazakhstan and adjacent areas. GLAGOL Publ House, St Petersburg, pp 359–369

    Google Scholar 

  • Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532

    Article  Google Scholar 

  • Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin, Heidelberg, New York, 514 p

    Google Scholar 

  • Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75:791–800

    Google Scholar 

  • Remond G, Phillips MR, Roques-Carmes C (2000) Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) (2000) Cathodoluminescence in geosciences. Springer Verlag, Berlin, Heidelberg, New York, pp 59–126

    Google Scholar 

  • Richter DK, Götte Th, Götze J, Neuser RD (2001) Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79:127–166

    Google Scholar 

  • Vortisch W, Harding D, Morgan J (2003) Petrographic analysis using cathodoluminescence microscopy with simultaneous energy-dispersive X-ray spectroscopy. Mineral Petrol 79:193–202

    Article  Google Scholar 

  • Yacobi C, Holt DB (1990) Cathodoluminescence microscopy of inorganic solids. Plenum, New York, 292 p

    Google Scholar 

  • Zinkernagel U (1978) Cathodoluminescence of quartz and its application to sandstone petrology. Contr Sed 8:69 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Götze, J., Kempe, U. (2009). Physical Principles of Cathodoluminescence (CL) and its Applications in Geosciences. In: Gucsik, A. (eds) Cathodoluminescence and its Application in the Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87529-1_1

Download citation

Publish with us

Policies and ethics