Skip to main content

Abstract

Relational instance-based learning (RIBL) algorithms offer high prediction capabilities. However, they do not scale up well, specially in domains where there is a time bound for classification. Nearest prototype approaches can alleviate this problem, by summarizing the data set in a reduced set of prototypes. In this paper we present an algorithm to build Relational Nearest Prototype Classifiers (rnpc). When compared with RIBL approaches, the algorithm is able to dramatically reduce the number of instances by selecting the most relevant prototypes, maintaining similar accuracy. The number of prototypes is obtained automatically by the algorithm, although it can be also bounded by the user. Empirical results on benchmark data sets demonstrate the utility of this approach compared to other instance based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emde, W., Wettschereck, D.: Relational instance-based learning. In: Proceedings of the Thirteen International Conference on Machine Learning, pp. 122–130. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  2. Dzeroski, S., Lavrac, N.: Relational Data Mining. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  3. Fernández, F., Isasi, P.: Evolutionary design of nearest prototype classifiers. Journal of Heuristics 10(4), 431–454 (2004)

    Article  Google Scholar 

  4. Kuncheva, L., Bezdek, J.: Nearest prototype classfication: Clustering, genetic algorithms, or random search? IEEE Transactions on Systems, Man, and Cybernetics (1998)

    Google Scholar 

  5. Witten, I., Frank, E.: Data Mining. Practical Machine Learning Tools and Techniques. Elsevier and Morgan Kaufmann (2005)

    Google Scholar 

  6. Kirsten, M., Wrobel, S., Horváth, T.: Distance Based Approaches to Relational Learning and Clustering. In: Relational Data Mining, pp. 213–232. Springer, Heidelberg (2001)

    Google Scholar 

  7. Woznica, A., Kalousis, A., Hilario, M.: Distance-based learning over extended relational algebra structures. In: Proceedings of the 15th International Conference of Inductive Logic Programming (2005)

    Google Scholar 

  8. Hilario, M., Kim, J., Bradley, P., Attwood, T.: Classifying protein fingerprints. In: Proceedings of the 8th Conference on Principles and Practice of Knowledge Discovery in Databases (2004)

    Google Scholar 

  9. Dzeroski, S., Schulze-Kreme, S., Heidtke, K., Siems, K., Wettschereck, D.: Intelligent Data Analysis in Medicine and Pharmacology. In: Diterpenes structure elucidation from 13C NMR spectra with machine learning, pp. 207–225 (1997)

    Google Scholar 

  10. Kalousis, A., Hilario, M.: Representational issues in meta-learning. In: Proceedings of the 20th International Conference on Machine Learning (2003)

    Google Scholar 

  11. Ramón, J., Bruynooghe, M.: A polinomial time computable metric between point sets. In: Acta Informática (2001)

    Google Scholar 

  12. Duda, P.H., Stork, D.: Nonparametric Techniques. In: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  13. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  14. Srinivasan, A., King, R., Muggleton, S.: The role of background knowledge: using a problem from chemistry to examine the performance of an ILP program, Under review for Intelligent Data Analysis in Medicine and Pharmacology (1996)

    Google Scholar 

  15. Bolckeel, H.: Top-down induction of first order logical decision trees. PhD thesis, Departament of Computer Science, Katholieke Universiteit Leuven (1998)

    Google Scholar 

  16. Leiva, H., Atramentov, A., Honavar, V.: Experiments with MRDTL – a multirelational decision tree learning algorithm. In: Proceedings of the Workshop on Multi-Relational Decision Tree Learning (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Danail Dochev Marco Pistore Paolo Traverso

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Durán, R., Fernández, F., Borrajo, D. (2008). Prototypes Based Relational Learning. In: Dochev, D., Pistore, M., Traverso, P. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2008. Lecture Notes in Computer Science(), vol 5253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85776-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85776-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85775-4

  • Online ISBN: 978-3-540-85776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics