Skip to main content

New Developments in Optical Coherence Tomography Technology

  • Chapter
Medical Retina

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  2. Drexler W, Fujimoto JG (2008) Optical coherence tomography: technology and applications. Springer, Verlag

    Book  Google Scholar 

  3. Drexler W, Fujimoto JG (2008) State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res 27:45–88

    Article  PubMed  Google Scholar 

  4. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117:43–48

    Article  CAS  Google Scholar 

  5. Leitgeb R, Hitzenberger CK, Fercher AF (2003) Perfor­mance of fourier domain vs. time domain optical coherence tomography. Opt Express 11:889–894

    Article  PubMed  CAS  Google Scholar 

  6. Unterhuber A, Považay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Opt Express 13:3252–3258

    Article  PubMed  Google Scholar 

  7. Považay B, Bizheva K, Hermann B, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Schubert C, Ahnelt PK, Mei M, Holzwarth R, Wadsworth WJ, Knight JC, Russel PS (2003) Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Opt Express 11:1980–1986

    Article  PubMed  Google Scholar 

  8. Považay B, Hermann B, Unterhuber A, Hofer B, Sattmann H, Zeiler F, Morgan JE, Falkner-Radler C, Glittenberg C, Binder S, Drexler W (2007) Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. J Biomed Opt 12:041211

    Article  PubMed  Google Scholar 

  9. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14:7821–7840

    Article  PubMed  Google Scholar 

  10. Lee EC, de Boer JF, Mujat M, Lim H, Yun SH (2006) In vivo optical frequency domain imaging of human retina and choroid. Opt Express 14:4403–4411

    Article  PubMed  Google Scholar 

  11. Yasuno Y, Hong YJ, Makita S, Yamanari M, Akiba M, Miura M, Yatagai T (2007) In vivo high-contrast imaging of deep posterior eye by 1-µm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express 15:6121–6139

    Article  PubMed  Google Scholar 

  12. Hong Y, Makita S, Yamanari M, Miura M, Kim S, Yatagai T, Yasuno Y (2007) Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express 15:7538–7550

    Article  PubMed  Google Scholar 

  13. Makita S, Fabritius T, Yasuno Y (2008) Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt Express 16:8406–8420

    Article  PubMed  Google Scholar 

  14. Huber R, Adler DC, Srinivasan VJ, Fujimoto JG (2007) Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 32:2049–2051

    Article  PubMed  CAS  Google Scholar 

  15. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker J, Schuman JS, Fujimoto JG (2008) Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci iovs.08–2127%U http://www.iovs.org/cgi/content/abstract/iovs.2108-2127v2121

  16. Povazay B, Hermann B, Hofer B, Kajic V, Simpson E, Bridgford T, Drexler W (2009) Wide field optical ­coherence tomography of the choroid in vivo. Invest Ophthalmol Vis Sci 50:1856–1863

    Article  PubMed  Google Scholar 

  17. Považay B, Hofer B, Torti C, Hermann B, Tumlinson AR, Esmaeelpour M, Egan CA, Bird AC, Drexler W (2009) Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt Express 17:4134–4150

    Article  PubMed  Google Scholar 

  18. Howland HC, Howland B (1977) A subjective method for the measurement of monochromatic aberrations of the eye. J Opt Soc Am 67:1508–1518

    Article  PubMed  CAS  Google Scholar 

  19. Liang JZ, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 14:2884–2892

    Article  PubMed  CAS  Google Scholar 

  20. Roorda A, Williams DR (1999) The arrangement of the three cone classes in the living human eye. Nature 397:520–522

    Article  PubMed  CAS  Google Scholar 

  21. Roorda A, Romero-Borja F, Donnelly WJ, Queener H, Hebert TJ, Campbell MCW (2002) Adaptive optics scanning laser ophthalmoscopy. Opt Express 10:405–412

    Article  PubMed  Google Scholar 

  22. Gray DC, Merigan W, Wolfing JI, Gee BP, Porter J, Dubra A, Twietmeyer TH, Ahmad K, Tumbar R, Reinholz F, Williams DR (2006) In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt Express 14:7144–7158

    Article  PubMed  Google Scholar 

  23. Hermann B, Fernandez EJ, Unterhuber A, Sattmann H, Fercher AF, Drexler W, Prieto PM, Artal P (2004) Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett 29:2142–2144

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Rha JT, Jonnal RS, Miller DT (2005) Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express 13:4792–4811

    Article  PubMed  Google Scholar 

  25. Zhang Y, Cense B, Rha J, Jonnal RS, Gao W, Zawadzki RJ, Werner JS, Jones S, Olivier S, Miller DT (2006) High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt Express 14:4380–4394

    Article  PubMed  Google Scholar 

  26. Zawadzki RJ, Jones SM, Olivier SS, Zhao MT, Bower BA, Izatt JA, Choi S, Laut S, Werner JS (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 13:8532–8546

    Article  PubMed  Google Scholar 

  27. Fernandez EJ, Hermann B, Povazay B, Unterhuber A, Sattmann H, Hofer B, Ahnelt PK, Drexler W (2008) Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt Express 16:11083–11094

    Article  PubMed  Google Scholar 

  28. Fernandez EJ, Vabre L, Hermann B, Unterhuber A, Povazay B, Drexler W (2006) Adaptive optics with a magnetic deformable mirror: applications in the human eye. Opt Express 14:8900–8917

    Article  PubMed  Google Scholar 

  29. Hee MR, Huang D, Swanson EA, Fujimoto JG (1992) Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B Opt Phys 9:903–908

    Article  Google Scholar 

  30. deBoer JF, Milner TE, vanGemert MJC, Nelson JS (1997) Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22:934–936

    Article  CAS  Google Scholar 

  31. Götzinger E, Pircher M, Hitzenberger CK (2005) High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt Express 13:10217–10229

    Article  PubMed  Google Scholar 

  32. Cense B, Mujat M, Chen TC, Park BH, de Boer JF (2007) Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera. Opt Express 15:2421–2431

    Article  PubMed  Google Scholar 

  33. Yamanari M, Miura M, Makita S, Yatagai T, Yasuno Y (2008) Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry. J Biomed Opt 13:10

    Article  Google Scholar 

  34. Cense B, Chen TC, Park BH, Pierce MC, de Boer JF (2004) Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 45:2606–2612

    Article  PubMed  Google Scholar 

  35. Pircher M, Götzinger E, Leitgeb R, Sattmann H, Findl O, Hitzenberger CK (2004) Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt Express 12:5940–5951

    Article  PubMed  Google Scholar 

  36. Pircher M, Götzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C, Schmidt-Erfurth U, Hitzenberger CK (2006) Human macula investigated in vivo with polarization-­sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 47:5487–5494

    Article  PubMed  Google Scholar 

  37. Michels S, Pircher M, Geitzenauer W, Simader C, Gotzinger E, Findl O, Schmidt-Erfurth U, Hitzenberger CK (2008) Value of polarisation-sensitive optical coherence ­tomography in diseases affecting the retinal pigment epithelium. Br J Ophthalmol 92:204–209

    Article  PubMed  CAS  Google Scholar 

  38. Götzinger E, Pircher M, Baumann B, Ahlers C, Geitzenauer W, Schmidt-Erfurt U, Hitzenberger CK (2009) Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt Express 17:4151–4165

    Article  PubMed  Google Scholar 

  39. Götzinger E, Pircher M, Baumann B, Hirn C, Vass C, Hitzenberger CK (2008) Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography. Invest Ophthalmol Vis Sci 49:5366–5372

    Article  PubMed  Google Scholar 

  40. Fortune B, Cull GA, Burgoyne CF (2008) Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. Invest Ophthalmol Vis Sci 49:4444–4452

    Article  PubMed  Google Scholar 

  41. Mujat M, Park BH, Cense B, Chen TC, de Boer JF (2007) Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J Biomed Opt 12:6

    Article  Google Scholar 

  42. Miura M, Yamanari M, Iwasaki T, Elsner AE, Makita S, Yatagai T, Yasuno Y (2008) Imaging polarimetry in age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2661–2667

    Article  PubMed  Google Scholar 

  43. Götzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurt U, Hitzenberger CK (2008) Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt Express 16:16410–16422

    Article  PubMed  Google Scholar 

  44. Logean E, Schmetterer LF, Riva CE (2000) Optical doppler velocimetry at various retinal vessel depths by variation of the source coherence length. Appl Opt 39:2858–2862

    Article  PubMed  CAS  Google Scholar 

  45. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard VX, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393

    Article  PubMed  Google Scholar 

  46. Friedman E (1997) A hemodynamic model of the pathogenesis of age-related macular degeneration. Am J Ophthalmol 124:677–682

    PubMed  CAS  Google Scholar 

  47. Schmetterer L, Wolzt M (1999) Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42:387–405

    Article  PubMed  CAS  Google Scholar 

  48. Wang XJ, Milner TE, Nelson JS (1995) Characterization of fluid flow velocity by optical Doppler tomography. Opt Lett 20:1337–1339

    Article  PubMed  CAS  Google Scholar 

  49. Izatt JA, Kulkarni MD, Yazdanfar S, Barton JK, Welch AJ (1997) In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt Lett 22:1439–1441

    Article  PubMed  CAS  Google Scholar 

  50. Chen Z, Milner TE, Dave D, Nelson JS (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22:64–66

    Article  PubMed  CAS  Google Scholar 

  51. Yazdanfar S, Rollins AM, Izatt JA (2000) Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt Lett 25:1448–1450

    Article  PubMed  CAS  Google Scholar 

  52. Yazdanfar S, Rollins AM, Izatt J (2003) In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol 121:235–239

    Article  PubMed  Google Scholar 

  53. Schmidt-Erfurth U, Leitgeb RA, Michels S, Povazay B, Sacu S, Hermann B, Ahlers C, Sattmann H, Scholda C, Fercher AF, Drexler W (2005) Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci 46:3393–3402

    Article  PubMed  Google Scholar 

  54. Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, Tearney GJ, de Boer JF (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482

    Article  PubMed  Google Scholar 

  55. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117:43–48

    Article  CAS  Google Scholar 

  56. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28:2067–2069

    Article  PubMed  Google Scholar 

  57. Choma MA, Sarunic MV, Yang C, Izatt J (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    Article  PubMed  Google Scholar 

  58. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463

    Article  PubMed  Google Scholar 

  59. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  Google Scholar 

  60. Leitgeb RA, Schmetterer L, Drexler W, Fercher AF, Zawadzki RJ, Bajraszewski T (2003) Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Optics Express 11:3116–3121

    Article  PubMed  Google Scholar 

  61. Leitgeb RA, Schmetterer L, Hitzenberger CK, Fercher AF, Berisha F, Wojtkowski M, Bajraszewski T (2004) Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Opt Lett 29:171–173

    Article  PubMed  Google Scholar 

  62. White BR, Pierce MC, Nassif N, Cense B, Park BH, Tearney GJ, Bouma BE, Chen TC, de Boer JF (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express 11:3490–3497

    Article  PubMed  Google Scholar 

  63. Schmoll T, Kolbitsch C, Leitgeb RA (2009) Ultra-high-speed volumetric tomography of human retinal blood flow. Opt Express 17:4166–4176

    Article  PubMed  CAS  Google Scholar 

  64. Bachmann AH, Villiger ML, Blatter C, Lasser T, Leitgeb RA (2007) Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. Opt Express 15:408–422

    Article  PubMed  Google Scholar 

  65. An L, Wang RK (2008) In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt Express 16:11438–11452

    Article  PubMed  Google Scholar 

  66. Szkulmowski M, Szkulmowska A, Bajraszewski T, Kowalczyk A, Wojtkowski M (2008) Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt Express 16:6008–6025

    Article  PubMed  Google Scholar 

  67. Tao YK, Davis AM, Izatt JA (2008) Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. Optics Express 16:12350–12361

    Article  PubMed  Google Scholar 

  68. Kolbitsch C, Schmoll T, Leitgeb RA (2009) Histogram-based filtering for quantitative 3D retinal angiography. J Biophotonics 2:416–425

    Article  PubMed  Google Scholar 

  69. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y (2006) Optical coherence angiography. Opt Express 14:7821–7840

    Article  PubMed  Google Scholar 

  70. Hong Y, Makita S, Yamanari M, Miura M, Kim S, Yatagai T, Yasuno Y (2007) Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt Express 15:7538–7550

    Article  PubMed  Google Scholar 

  71. Unterhuber A, Pova?ay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W (2005) In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. Opt Express 13:3252–3258

    Article  PubMed  Google Scholar 

  72. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, Yatagai T (2007) In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography. Opt Express 15:6121–6139

    Article  PubMed  Google Scholar 

  73. Michaely R, Bachmann AH, Villiger ML, Blatter C, Lasser T, Leitgeb RA (2007) Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography. J Biomed Opt 12:041213–041217

    Article  PubMed  Google Scholar 

  74. Makita S, Fabritius T, Yasuno Y (2008) Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. Opt Lett 33:836–838

    Article  PubMed  Google Scholar 

  75. Werkmeister RM, Dragostinoff N, Pircher M, Gˆtzinger E, Hitzenberger CK, Leitgeb RA, Schmetterer L (2008) Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt Lett 33:2967–2969

    Article  PubMed  Google Scholar 

  76. Wang YM, Bower BA, Izatt JA, Tan O, Huang D (2008) Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 13:064003

    Article  PubMed  Google Scholar 

  77. van Leeuwen TG, Kulkarni MD, Yazdanfar S, Rollins AM, Izatt JA (1999) High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography. Opt Lett 24:1584–1586

    Article  PubMed  Google Scholar 

  78. Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res 72:239–245

    Article  PubMed  CAS  Google Scholar 

  79. Vilser W, Nagel E, Lanzl I (2002) Retinal vessel analysis-new possibilities. Biomed Tech 47(Suppl 1):682–685

    Article  Google Scholar 

  80. Wang Y, Fawzi A, Tan O, Gil-Flamer J, Huang D (2009) Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt Express 17:4061–4073

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the members of the Biomedical Imaging Group at the School of Optometry and Vision Sciences, Cardiff University, Alan C. Bird and Catherine A. Egan, Medical Retina Service, Moorfields, London, United Kingdom; B. Baumann, E. Götzinger, M. Pircher, T. Schmoll, C. Kolbitsch, L. Schmetterer and H. Sattmann, Center for Biomedical Engineering and Physics, Medical University of Vienna; C. Ahlers, W. Geitzenauer, S. Michels, and U. Schmidt-Erfurth, Department of Ophthalmology, Medical University of Vienna, T. Lasser, A. Bachmann, R. Michaely, and M. Villiger, Ecole Polytechnique Federale de Lausanne, Switzerland. Financial and equipment support by the following institutions is also acknowledged: Cardiff University, FP6-IST-NMP-2 STREPT (017128), Action Medical Research (AP1110), DTI (1544C), European Union project FUN OCT (FP7 HEALTH, contract no. 201880); FEMTOLASERS GmbH, Carl Zeiss Meditec Inc., Exalos Inc, Maxon Computer GmbH, Multiwave Photonics and The Lowy Foundation, Sydney, Australia; Austrian Science Fund (P19624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Drexler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drexler, W., Leitgeb, R., Hitzenberger, C.K. (2010). New Developments in Optical Coherence Tomography Technology. In: Holz, F.G., Spaide, R. (eds) Medical Retina. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85540-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85540-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85539-2

  • Online ISBN: 978-3-540-85540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics