Skip to main content

Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format

  • Conference paper
Reliable Implementation of Real Number Algorithms: Theory and Practice

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5045))

Abstract

We searched for the worst cases for correct rounding of the exponential function in the IEEE 754r decimal64 format, and computed all the bad cases whose distance from a breakpoint (for all rounding modes) is less than 10− 15 ulp, and we give the worst ones. In particular, the worst case for |x| ≥ 3 ×10− 11 is \(\exp(9.407822313572878 \times 10^{-2}) = 1.098645682066338\,5\,0000000000000000\,278\ldots\). This work can be extended to other elementary functions in the decimal64 format and allows the design of reasonably fast routines that will evaluate these functions with correct rounding, at least in some domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE: IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. Institute of Electrical and Electronics Engineers, New York (1985)

    Google Scholar 

  2. IEEE: IEEE Standard for Radix-Independent Floating-Point Arithmetic, ANSI/IEEE Standard 854-1987. Institute of Electrical and Electronics Engineers, New York (1987)

    Google Scholar 

  3. Cowlishaw, M., Schwarz, E.M., Smith, R.M., Webb, C.F.: A decimal floating-point specification. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, Colorado, USA, pp. 147–154. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  4. Cowlishaw, M.: Decimal arithmetic encoding strawman 4d, draft version 0.96. Report, IBM UK Laboratories, Hursley, UK (2003)

    Google Scholar 

  5. Lefèvre, V., Muller, J.M.: Worst cases for correct rounding of the elementary functions in double precision. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, Colorado, pp. 111–118. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  6. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching worst cases of a one-variable function using lattice reduction. IEEE Transactions on Computers 54(3), 340–346 (2005)

    Article  Google Scholar 

  7. Dunham, C.B.: Feasibility of “perfect” function evaluation. ACM Sigum Newsletter 25(4), 25–26 (1990)

    Article  Google Scholar 

  8. Gal, S., Bachelis, B.: An accurate elementary mathematical library for the IEEE floating point standard. ACM Transactions on Mathematical Software 17(1), 26–45 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Muller, J.M.: Elementary Functions, Algorithms and Implementation. Birkhauser, Boston (1997)

    MATH  Google Scholar 

  10. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. Research report RR-5753, INRIA (2005)

    Google Scholar 

  11. Lefèvre, V.: Moyens arithmétiques pour un calcul fiable. PhD thesis, École Normale Supérieure de Lyon, Lyon, France (2000)

    Google Scholar 

  12. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)

    Article  Google Scholar 

  14. Stehlé, D.: Algorithmique de la réduction de réseaux et application à la recherche de pires cas pour l’arrondi de fonctions mathématiques. PhD thesis, Université Henri Poincaré – Nancy 1, Nancy, France (2005)

    Google Scholar 

  15. Nguyen, P., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

    Google Scholar 

  16. Ziv, A.: Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Transactions on Mathematical Software 17(3), 410–423 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Hertling Christoph M. Hoffmann Wolfram Luther Nathalie Revol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefèvre, V., Stehlé, D., Zimmermann, P. (2008). Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85521-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85520-0

  • Online ISBN: 978-3-540-85521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics