Skip to main content

Discovering Pathways of Service Oriented Biological Processes

  • Conference paper
Web Information Systems Engineering - WISE 2008 (WISE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5175))

Included in the following conference series:

Abstract

Service oriented modeling and deployment of biological processes allow these processes to be published, discovered and, most importantly, invoked on the Web. This in-place invocation capability provides the basis for simulation based validation and predictive analysis of discovered pathways linking published services. We present a Web service mining framework that enables the discovery and validation of such pathways. In our experiment, we model the semantic interfaces of biological processes as WSML Web services and deploy them through the execution environment WSMX. We show how pathways involving these processes are discovered and simulated using our service mining approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apache axis2/java - next generation web services, http://ws.apache.org/axis2/

  2. Aspirin, http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm

  3. Bps: Biochemical pathway simulator, http://www.brc.dcs.gla.ac.uk/projects/bps/

  4. Copasi, http://mendes.vbi.vt.edu/tiki-index.php?page=COPASI

  5. The graphml file format, http://graphml.graphdrawing.org/

  6. Java architecture for xml binding, binding compiler (xjc), http://java.sun.com/webservices/docs/1.6/jaxb/xjc.html

  7. Jetty, http://www.mortbay.org/

  8. Nf-kappab pathway, http://www.cellsignal.com/reference/pathway/NF_kappaB.html

  9. Uniprotkb/swiss-prot, http://www.ebi.ac.uk/swissprot/

  10. The web service modeling language WSML, http://www.wsmo.org/wsml/wsml-syntax

  11. Web services description language (WSDL) 1.1, http://www.w3.org/TR/wsdl

  12. Web services execution environment, http://sourceforge.net/projects/wsmx

  13. Web Services Flow Language (WSFL), Technical report, IBM, http://xml.coverpages.org/wsfl.html

  14. Web services semantics - WSDL-S, http://www.w3.org/Submission/WSDL-S/

  15. yed - java graph (ed.), http://www.yworks.com/en/products_yed_about.htm

  16. Owl-s: Semantic markup for web services (November 2004), http://www.w3.org/Submission/OWL-S/

  17. Web services architecture - w3c working group note (February 2004), http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

  18. Auyang, S.Y.: From experience to design - the science behind aspirin, http://www.creating-technology.org/biomed/aspirin.htm

  19. BEA, IBM, and Microsoft. Business process execution language for web services (bpel4ws), http://xml.coverpages.org/bpel4ws.html

  20. Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999)

    Article  Google Scholar 

  21. Brent, R., Bruck, J.: Can computers help to explain biology? Nature 440(23), 416–417 (2006)

    Article  Google Scholar 

  22. Cohen, J.: Bioinformatics: An introduction for computer scientists. ACM Computing Surveys 36(2), 122–158 (2004)

    Article  Google Scholar 

  23. DAML (2004), http://www.daml.org/services/owl-s/

  24. de Jong, H., Page, M.: Qualitative simulation of large and complex genetic regulatory systems. In: Proceedings of the 14th European Conference on Artificial Intelligence, ECAI, Amsterdam, pp. 141–145 (2000)

    Google Scholar 

  25. Dustdar, S., Hoffmann, T., van der Aalst, W.: Mining of ad-hoc business processes with teamLog, 2005. Data and Knowledge Engineering (2005)

    Google Scholar 

  26. Yao, D., et al.: Pathwayfinder: Paving the way toward automatic pathway extraction. In: Proceedings of the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New Zealand, vol. 29, pp. 52–62. Australian Computer Society, Inc. (2004)

    Google Scholar 

  27. Ibelgaufts, H.: Cope - cytokines online pathfinder encyclopaedia, http://www.copewithcytokines.de/

  28. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Arki, M., Hirakawa, M.: From genomics to chemical genomics: new developments in kegg. Mucleic Acids Research 34, 354–357 (2006)

    Article  Google Scholar 

  29. Karp, P.D., Paley, S., Romero, P.: The pathway tools software. Bioinformatics 18, S1–S8 (2002)

    Article  Google Scholar 

  30. Kanehisa Laboratories. Kegg: Kyoto encyclopedia of genes and genomes, http://www.genome.jp/kegg/

  31. McDonald, D.M., Chen, H., Su, H., Marshall, B.B.: Extractin gene pathway relations using a hybrid grammar: the arizona relation parser. Bioinformatics 20(182004), 3370–3378 (2004)

    Article  Google Scholar 

  32. NCBI. Genbank, http://www.ncbi.nlm.nih.gov/Genbank/

  33. Ng, S.-K., Wong, M.: Toward routine automatic pathway discovery from on-line scientific text abstracts, vol. 10, pp. 104–112 (1999)

    Google Scholar 

  34. Santos, C., Eggle, D., States, D.J.: Wnt pathway curation using automated natural language processing: combining statistical methods with partial and full parse for knowledge extraction. Bioinformatics 21(82005), 1653–1658 (2005)

    Google Scholar 

  35. Thatte, S.: XLANG - Web Services For Business Process Design. Technical report, Microsoft (2001), http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

  36. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., Hutchison III, C.A.: E-cell: software environment for whole-cell simulation. Bioinformatics 15(1), 72–84 (1999)

    Article  Google Scholar 

  37. UCLA. Database of interacting proteins, http://dip.doe-mbi.ucla.edu/

  38. Yin, M.-J., Yamamto, Y., Gaynor, R.B.: The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 369, 77–80 (1998)

    Google Scholar 

  39. Zheng, G., Bouguettaya, A.: Mining web services for pathway discovery. In: 2007 VLDB Workshop on Data Mining in Bioinformatics, Vienna, Austria (September 2007)

    Google Scholar 

  40. Zheng, G., Bouguettaya, A.: A web service mining framework. In: 2007 IEEE International Conference on Web Services (ICWS), Salt Lake City, Utah (July 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James Bailey David Maier Klaus-Dieter Schewe Bernhard Thalheim Xiaoyang Sean Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, G., Bouguettaya, A. (2008). Discovering Pathways of Service Oriented Biological Processes. In: Bailey, J., Maier, D., Schewe, KD., Thalheim, B., Wang, X.S. (eds) Web Information Systems Engineering - WISE 2008. WISE 2008. Lecture Notes in Computer Science, vol 5175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85481-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85481-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85480-7

  • Online ISBN: 978-3-540-85481-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics