Skip to main content

Transport of Sugars and Sugar Alcohols by Lactic Acid Bacteria

  • Chapter
Biology of Microorganisms on Grapes, in Must and in Wine

Transport of sugars represents an important step in sugar metabolism of bacteria, and is often a limiting step for control of metabolism. Little is known about sugar transport in most lactic acid bacteria (LAB), in particular in heterofermentative strains. In the recent years, important information was obtained from genome sequences of lactic acid bacteria. Here, the annotated genomes of Oenococcus oeni PSU-1 and other wine related LAB, Pediococcus pentosaceus ATCC 25745, Leuconostoc mesenteroides ATCC 8293, Lactobacillus plantarum WCFS1 and Lactococcus lactis ssp. lactis IL1403 were screened for genes which are associated with uptake of sugars. In the homo- and heterofermentative LAB secondary carriers, phosphotransferase systems and ABC transporters are found which are candidates for the uptake of sugars and sugar alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  • Ajdic C, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99(22):14434–14439

    Article  PubMed  CAS  Google Scholar 

  • Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, Von Wright A (eds.) Lactic Acid Bacteria: Microbiology and Functional Aspects, 3rd edn. Marcel Deker, New York, pp. 1–72

    Google Scholar 

  • Beelman RB, Gavin A, Keen RN (1977) A new strain of Leuconostoc oenos for induced malo-lactic fermentation in eastern wines. Am J Enol Vit 28(3):159–170

    CAS  Google Scholar 

  • Benthin S, Nielsen J, Villadsen J (1993) Two uptake systems for fructose in Lactococcus lactis subsp. cremoris FD1 produce glycolytic and gluconeogenetic fructose phosphates and induce oscillation in growth and lactic acid formation. Appl Environ Microbiol 59 (10):3206–3211

    PubMed  CAS  Google Scholar 

  • Blickstad E, Molin G (1981) Growth and lactic acid production of Pediococcus pentosaceus at different gas environments, temperatures, pH values and nitrite concentrations. Eur J Appl Microbiol Biotechnol 13:170–174

    Article  CAS  Google Scholar 

  • Boekhorst J, Siezen RJ, Zwahlen MC, Vilanova D, Pridmore RD, Mercenier A, Kleerebezem M, De Vos WM, Brüssow H, Desiere F (2004) The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organisation and gene content. Microbiology 150:3601–3611

    Article  PubMed  CAS  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11(5):731–753

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Lucht JM (1996) Periplasmic binding protein-dependent ABC transporters. In: Neidhardt FC (ed.) Escherichia coli and Salmonella, Cellular and Molecular Biology, 2nd edn. vol 1. ASM Press, Washington, DC, pp. 1175–1209

    Google Scholar 

  • Chaillou S, Postma PW, Pouwels PH (1998) Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus. J Bacteriol 180:4011–4014

    PubMed  CAS  Google Scholar 

  • Chaillou S, Pouwels PH, Postma PW (1999) Transport of d-Xylose in Lactobacillus pentoses, Lactobacillus casei, and Lactobacillus plantarum: evidence for mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system. J Bacteriol 181(16):4768–4773

    PubMed  CAS  Google Scholar 

  • Cocaign-Bousquet M, Garrigues C, Loubiere P, Lindley ND (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70:253–267

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phos-phorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Batemann A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(database issue):D247–D251

    Article  PubMed  CAS  Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+; ratio. J Bacteriol 179(17):5282–5287

    PubMed  CAS  Google Scholar 

  • Garvie EI (1986a) Genus Pediococcus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.) Bergey's Manual of Systematic Bacteriology, vol II. Williams & Wilkins, Baltimore, MD, pp. 1075–1079

    Google Scholar 

  • Garvie EI (1986b) Genus Leuconostoc van Tieghem 1878, 198AL emend mut. char. Hucker and Pederson 1930, 66AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.) Bergey's Manual of Systematic Bacteriology, vol II. Williams&Wilkins, Baltimore, MD, pp. 1071–1074

    Google Scholar 

  • Grossiord BP, Luesink EJ, Vaugan EE, Arnaud A, De Vos WM (2003) Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway. J Bacteriol 185:870–878

    Article  PubMed  CAS  Google Scholar 

  • Heuberger EH, Smits E, Poolman B (2001) Xyloside transport by XylP, a member of the galacto-side-pentoside-hexuronide family. J Biol Chem 276:34465–34472

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang DN (2003) Structure and mechanism of the glyc-erol-3-phosphate transporter from Escherichia coli. Science 301(5633):616–620

    Article  PubMed  CAS  Google Scholar 

  • Huber F, Erni B (1996) Membrane topology of the mannose transporter of Escherichia coli K12. Eur J Biochem 239:810–817

    Article  PubMed  CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49:209–224

    Article  PubMed  CAS  Google Scholar 

  • Kandler O, Weiss N (1986) Genus Lactobacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds.) Bergey's Manual of Systematic Bacteriology, vol II. Williams&Wilkins, Baltimore, MD, pp. 1209–1234

    Google Scholar 

  • Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, Van De Guchte M, Guzzo J, Hartke A, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmire D, Saier M, Van Sinderen A, Steele J, O'Sullivan D, De Vo s W, Weimer B, Zagorec M, Siezen R (2002) Discovering lactic acid bacteria by genomics. Antonie van Leeuwenhoek 82:29–58

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Klein Lankhorst RM, Bron PA, Hoffer SM, Nierop Groot MN, Kerkhoven R, De Vries M, Ursing B, De Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100(4):1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82:3–27

    Article  PubMed  CAS  Google Scholar 

  • Kundig W, Ghosh S, Roseman S (1964) Phosphate bound to histidine in a protein as an intermediate in a novel phosphor-transferase system. Proc Natl Acad Sci U S A 52:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Law J, Buist G, Haandrikman A, Kok J, Venema G, Leenhouts K (1995) A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177(24):7011–7018

    PubMed  CAS  Google Scholar 

  • Lengeler JW, Jahreis K (1996) Phosphotransferase systems or PTS as carbohydrate transport and as signal transduction systems. In: Konings WN, Kaback HR, Lolkema JS (eds.) Handbook of Biological Physics, vol 2. Elsevier, Amsterdam, pp. 573–598

    Google Scholar 

  • MacPherson AJ, Jones-Mortimer MC, Henderson PJ (1981) Identification of the AraE transport protein of Escherichia coli. Biochem J 196(1):269–283

    PubMed  CAS  Google Scholar 

  • Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides N (2006) The integrated microbial genomes (IMG) system. Nulceic Acids Res 34(database issue):D344–D348

    Article  CAS  Google Scholar 

  • Melchiorsen CR, Jokumsen KV, Villadsen J, Isrealsen H, Arnau J (2002) The level of pyruvate-formate lyase controls the shift from homolactic to mixed acid product formation in Lactococcus lactis. Appl Microbiol Biotechnol 58(3):338–344

    Article  PubMed  CAS  Google Scholar 

  • Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki H, Ito K, Matsuzaki S, Tanaka S (1992) Existence of phosphoenolpyruvate: carbohydrate phosphotransferase systems in Lactobacillus fermentum, an obligate heterofermenter. Microbiol Immunol 36 (5):553–558

    Google Scholar 

  • Neves AR, Pool WA, Kok J, Kuipers OP, Santos H (2005) Overview on sugar metabolism and its control in Lactococcus lactis – the input from in vivo NMR. FEMS Microbiol Rev 29:531–554

    Article  PubMed  CAS  Google Scholar 

  • Palmfeldt J, Paese M, Hahn-Hägerdal B, van Niel EWJ (2004) The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis. Appl Environ Mircobiol 70(9):5477–5484

    Article  CAS  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62 (1):1–34

    PubMed  CAS  Google Scholar 

  • Papagianni M, Avramidis N, Filiousis G (2007) Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb Cell Fact 6:16

    Article  PubMed  Google Scholar 

  • Poolman B, Knol J, Van Der Does C, Henderson PJF, Liang WJ, Leblanc G, Pourcher T, Mus-Veteau I (1996) Cation and sugar selectivity determinants in a novel family of transpor proteins. Mol Microbiol 19(5):911–922

    Article  PubMed  CAS  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phospho-transferase systems of bacteria. Microbiol Rev 57(3):543–594

    PubMed  CAS  Google Scholar 

  • Reizer J, Saier MH Jr, Deutscher J, Grenier F, Thompson J, Hengstenberg W (1988) The phos-phoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria: properties, mechanism, and regulation. Crit Rev Microbial 15(4):297–338

    Article  CAS  Google Scholar 

  • Romano AH, Trifone JD, Brustolon M (1979) Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in fermentative bacteria. J Bacteriol 139(1):93–97

    PubMed  CAS  Google Scholar 

  • Saier MH Jr (2000) Families of transmembrane sugar transport proteins. Mol Microbiol 35(4):699–710

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Ye JJ, Klinke S, Nino E (1996) Identification of an anaerobically induced phosphoe-nolpyruvate-dependent fructose-specific phosphotransferase system and evidence for Embden—Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J Bacteriol 178(1):314–316

    PubMed  CAS  Google Scholar 

  • Saier MH Jr, Tran C V, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res(34 database issue): D181–D186

    Article  PubMed  CAS  Google Scholar 

  • Saulnier DMA, Molenaar D, De Vos WM, Gibson GR, Kolida S (2007) Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCF1 through microarrays. Appl Environ Microbiol 73(6):1753–1765

    Article  PubMed  CAS  Google Scholar 

  • Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48(1):22–41

    Article  PubMed  CAS  Google Scholar 

  • Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W (1985) Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 6:183–195

    CAS  Google Scholar 

  • Schneider E, Hunke S (1998) ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Sjöberg A, Hahn-Hägerdal B (1989) β-Glucose-1-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis. Appl Environ Microbiol 55(6):1549–1554

    PubMed  Google Scholar 

  • Stolz P, Vogel RF, Hammes WP (1995) Utilization of electron acceptors by lactobacilli isolated from sour dough. Z Lebensm Unters Forsch 201:402–410

    Article  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A Genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Teuber M, Geis A (1981) The Family Streptococcaceae (Nonmedical Aspects). In: Starr MP, Stolp H, Trüper HW, Balows A, Schlegel HG (eds.) The Procaryotes, A Handbook on Habitats, Isolation, and Identification of Bacteria. Springer, Berlin, pp. 1614–1630

    Google Scholar 

  • Thompson J (1980) Galactose transport systems in Streptococcus lactis. J Bacteriol 144(2):683–691

    PubMed  CAS  Google Scholar 

  • Thompson J (1987) Sugar transport in the lactic acid bacteria. In: Reizer J, Peterskofky A (eds.) Sugar Transport and Metabolism in Gram-positive Bacteria. Ellis Horwood Limited, Chichester, pp. 13–38

    Google Scholar 

  • Thompson J, Chassy BM (1981) Uptake and metabolism of sucrose by Streptococcus lactis. J Bacteriol 147(2):543–551

    PubMed  CAS  Google Scholar 

  • Thompson J, Chassy BM (1985) Intracellular phosphorylation of glucose analogs via the phos-phoenolpyruvate:mannose-phosphotransferase system in Streptococcus lactis. J Bacteriol 162(1):224–234

    PubMed  CAS  Google Scholar 

  • Unden G, Zaunmüller T (2008) Metabolism of sugars and organic acids by lactic acid bacteria from wine and must. Chap. 7, this volume

    Google Scholar 

  • Veiga-Da-Cunha M, Santos H, van Schaftingen E (1993) Pathway and regulation of erythritol formation in Leucocnostoc oenos. J Bacteriol 175:3941–3948

    PubMed  CAS  Google Scholar 

  • Yazyu H, Shiota-Niiya S, Shimamoto T, Kanazawa H, Futai M, Tsuchiya T (1984) Nucleotide sequence of the melB gene and characteristics of deduced amino acid sequence of the melibi-ose carrier in Escherichia coli. J Biol Chem 259:4320–4326

    PubMed  CAS  Google Scholar 

  • Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of bio-tecgnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72(3):421–429

    Article  PubMed  CAS  Google Scholar 

  • Zhang DS, Lovitt RW (2005) Studies on growth and metabolism of Oenococcus oeni on sugars and sugar mixtures. J Appl Microbiol 99:565–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zaunmüller, T., Unden, G. (2009). Transport of Sugars and Sugar Alcohols by Lactic Acid Bacteria. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_8

Download citation

Publish with us

Policies and ethics