Skip to main content

Polysaccharide Production by Grapes, Must, and Wine Microorganisms

  • Chapter
Biology of Microorganisms on Grapes, in Must and in Wine

In this chapter, we describe the formation of polysaccharides (PS) by some of the microorganisms most frequently encountered in grapes, must, and wine: Botrytis cinerea, Saccharomyces cerevisiae, Oenococcus oeni, and ropy Pediococci. The structure of the polymer produced, the metabolic pathways identified, the putative or demonstrated benefits linked to capsular PS formation for the microorganism, and the impact of the PS released on wine quality are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeyeye A, Jansson PE, Lindberg B (1988) Structural studies of the capsular polysaccharide from Streptococcus pneumoniae type 37. Carbohydr Res 180:295–299

    Article  CAS  Google Scholar 

  • Alexandre H, Bertrand F, Charpentier C (1998) Ethanol induced yeast film formation with cell surface hydrophobicity as major determinant. Food Technol Biotechnol 36:27–30

    CAS  Google Scholar 

  • Alexandre H, Blanchet S, Charpentier C (2000) Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation. FEMS Microbiol Lett 185:147–150

    Article  PubMed  CAS  Google Scholar 

  • Ballou CE (1976) The structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microbiol Physiol 14:93–158

    Article  CAS  Google Scholar 

  • Ballou CE (1990) Yeast cell-wall and cell surface isolation, characterisation, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470

    Article  PubMed  CAS  Google Scholar 

  • Boels IC, van Kranenburg R, Hugenholtz J, Kleerebezen M, de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11:723–732

    Article  CAS  Google Scholar 

  • Caridi A (2006) Enological functions of parietal yeast mannoproteins. Antonie van Leeuwenhoek 89:417–422

    Article  PubMed  Google Scholar 

  • Caridi A, Cufari A, Lovino R, Palumbo R, Tedesco I (2004) Influence of yeast on polyphenol composition of wine. Food Technol Biotechnol 42:37–40

    CAS  Google Scholar 

  • Chalier P, Angot B, Delteil D, Doco T, Gunata Z (2007) Interactions between aroma compounds and whole mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem 100:22–30

    Article  CAS  Google Scholar 

  • Charpentier C, Dos Santos AM, Feuillat M (2004) Release of macromolecules by Saccharomyces cerevisiae during ageing of French flor sherry wine “Vin jaune”. Int J Food Microbiol 96:253–262

    Article  PubMed  CAS  Google Scholar 

  • Degeest B, Vaningelgem F, de Vuyst L (2001) Microbial physiology, fermentation kinetics and process engineering of heteropolysaccharide production by lactic acid bacteria. Int Dairy J 11:747–757

    Article  CAS  Google Scholar 

  • De Groot PWJ, Ruiz C, Vasquez de Aldana CR, Duenas E, Cid VJ, del Rey F, Rodriguez-Pena JM, Perez P, Andel A, Caubin J, Arroyo J, Garcia JC, Gil C, Molina M, Garcia LJ, Nombella C, Klis FM (2001) A genomic approach for the identification and classification of genes involved in cell-wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2:124–142

    Google Scholar 

  • Delaherche A, Claisse O, Lonvaud-Funel A (2004) Detection and quantification of Brettanomyces bruxellensis and “ropy” Pediococcus damnosus strains in wine by real time polymerase chain reaction. J Appl Microbiol 97:910–915

    Article  PubMed  CAS  Google Scholar 

  • De Nobel JG, Dijkers C, Hooiberg E, Klis FM (1989) Increase cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreito or EDTA. J Gen Microbiol 135:2077–2084

    Google Scholar 

  • De Nobel JG, Klis FM, Priem J, Munnik T, van den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499

    Article  PubMed  Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    Article  PubMed  Google Scholar 

  • Dols-Lafargue M, Gindreau E, Le Marrec C, Chambat G, Heyraud A, Lonvaud Funel A (2007) Changes in red wine polysaccharides composition induced by malolactic fermentation. J Agric Food Chem 55:9592–9599

    Article  PubMed  CAS  Google Scholar 

  • Dols-Lafargue M, Lee HY, le Marrec C, Heyraud A, Chambat G, Lonvaud-Funel A (2008) Studies on gtf, a glucosyltransferase gene shared by Pediococcus parvuius and Oenococcus oeni. Appl Environ Microbiol 74:4079–4090

    Article  PubMed  CAS  Google Scholar 

  • Doss RP (1999) Composition and enzymatic activity of the extracellular matrix secreted by germlings of Botrytis cinerea. Appl Environ Microbiol 65:404–408

    PubMed  CAS  Google Scholar 

  • Doss RP, Potter SW, Soeldner AH, Christian JK, Fukunaga LE (1995) Adhesion of germlings of Botrytis cinerea. Appl Environ Microbiol 61:260–265

    PubMed  CAS  Google Scholar 

  • Doss RP, Deisenhoter J, Krug von Nidda HA, Soeldner AH, McGuire RP (2003) Melanin in the extracellular matrix of germlings of Botrytis cinerea. Phytochemistry 63:687–691

    Article  PubMed  CAS  Google Scholar 

  • Dubourdieu D (1982) Recherche sur les polysaccharides sécrétés par Botrytis cinerea dans la baie de raisin. Thèse d'état, Université Bordeaux II, no. 37.

    Google Scholar 

  • Dubourdieu D, Ribereau-Gayon P (1980) Mise en evidence d'une β-(1–3)-glucanase exocellulaire chez Botrytis cinerea. CR Acad Sci 290:25–28

    CAS  Google Scholar 

  • Dubourdieu D, Moine V (1996) Produit biologique pour la stabilisation physicochimique d'un vin. French Patent 96 08187

    Google Scholar 

  • Dubourdieu D, Pucheu-Plante B, Mercier M, Ribereau-Gayon P (1978) Structure, rôle et localisation du glucane exocellulaire de B. cinerea sécrété dans la baie de raisin. CR Acad Sci 287:571–573

    CAS  Google Scholar 

  • Dubourdieu D, Ribereau-Gayon P, Fournet B (1981) Structure of the extracellular β-d-glucan from Botrytis cinerea. Carbohydr Res 93:294–299

    Article  CAS  Google Scholar 

  • Dubourdieu D, Desplanques C, Villettaz JC, Ribereau-Gayon P (1985) Investigations of an industrial β-d-glucanase from Trichoderma harzianum. Carbohydr Res 144:277–287

    Article  CAS  Google Scholar 

  • Duenas M, Irastorza A, Fernandez K, Bilbao A (1995) Heterofermentative Lactobacilli causing ropiness in basque country ciders. J food protect 58:76–80

    Google Scholar 

  • Duenas-Chasco MT, Rodriguez-Carvajal MA, Tejero-Mateo P, Franco-Rodriguez G, Espartero JL, Irastorza-Iribas A, Gil-Serrano AM (1997) Structural analysis of the exopolysaccharides produced by Pediococcus damnosus 2.6. Carbohydr Res 303:453–458

    Article  PubMed  CAS  Google Scholar 

  • Duenas-Chasco MT, Rodriguez-Carvajal MA, Tejero-Mateo P, Espartero JL, Irastorza-Iribas A, Gil-Serrano AM (1998) Structural analysis of the exopolysaccharides produced by Lactobacillus spp. G-77. Carbohydr Res 307:125–133

    Article  PubMed  CAS  Google Scholar 

  • Duenas M, Munduate A, Perea A, Irastorza A (2003) Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Int J Food Microbiol 87:113–120

    Article  PubMed  CAS  Google Scholar 

  • Escot S, Feuillat M, Dulau L, Charpentier C (2001) Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astrengency. Aust J Wine Grape Res 7:153–159

    Article  Google Scholar 

  • Fernandez K, Duenas M, Irastorza A, Bilbao A, del Campo G (1995) Characterisation and DNA plasmid analysis of ropy Pediococcus spp strains isolated from basque country ciders. J Food Protect 59:35–40

    Google Scholar 

  • Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  PubMed  CAS  Google Scholar 

  • Garcia E, Llull D, Lopez R (1999) Functional organisation of the gene cluster involved in the synthesis of the pneumococcal capsule. Int Microbiol 2:169–176

    PubMed  CAS  Google Scholar 

  • Gerbaud V, Gabas N, Laguerie C, Blouin J, Vidal S, Moutounet M, Pellerin P (1996) Effect of wine polysaccharides on the nucleation of potassium hydrogen tartrate in model solution. Chem Eng Res Design 74:782–790

    CAS  Google Scholar 

  • Gil-ad NL, Bar-Nun N, Mayer AM (2001) The possible function of the glucan sheath of Botrytis cinerea: effects on the distribution of the enzyme activities. FEMS Microbiol Lett 199:109–113

    Article  PubMed  CAS  Google Scholar 

  • Gindreau E, Walling E, Lonvaud-Funel A (2001) Direct polymerase chain reaction detection of ropy Pediococcus damnosus strains in wine. J Appl Microbiol 90:535–542.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Ramos D, Gonzales R (2006) Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae. J Agric Food Chem 54:9411–9416

    Article  CAS  Google Scholar 

  • Guilloux-Benatier M, Chassagne D (2003) Comparison of components released by fermented or active dried yeasts after aging on lees in a model wine. J Agric Food Chem 51:746–751

    Article  PubMed  CAS  Google Scholar 

  • Guilloux-Benatier M, Guerreau J, Feuillat M (1995) Influence of initial colloid content on yeast macromolecule production and on the metabolism of wine microorganisms. Am J Enol Vitic 46:486–492

    CAS  Google Scholar 

  • Guzzo J, Cavin JF, Diviès C (1994) Induction of stress proteins in Leuconostoc oenos to perform direct inoculation of wine. Biotechnol Lett 16:1189–1194

    Article  CAS  Google Scholar 

  • Ibarburu I, Soria-Diaz ME, Rodriguez-Carvajal MA, Velasco SE, Tejero Mateo P, Gil-Serrano AM, Iraztorza A, Dueňas MT (2007) Growth and exopolysaccharide ( EPS) production by Oenococcus oeni I4 and structural characterisation of their EPSs. J Appl Microbiol 103:477–486

    Article  PubMed  CAS  Google Scholar 

  • Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345

    PubMed  CAS  Google Scholar 

  • Jolly L, Stingele F (2001) Molecular organisation and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J 11:733–745

    Article  CAS  Google Scholar 

  • Kapteyn JC, Montijn RC, Vink E, de la Cruz J, Llobell A, Douwes JE, Shimoi H, Lipke PN, Klis FM (1996) Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6:337–345

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, van Kranenburg R, Tuinier R, Boels IC, Zoon P, Looijesteijn E, Hugenholtz J, de Vos WM (1999) Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? Antonie Van Leeuwenhoek 76:357–365

    Article  PubMed  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    Article  PubMed  CAS  Google Scholar 

  • Kolkman MA, van der Zeijst BA, Nuijten PJ (1998) Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. J Biochem (Tokyo) 123:937–945

    CAS  Google Scholar 

  • Kollár R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→)3-glucan, and chitin. J Biol Chem 272:17762–17775

    Article  PubMed  Google Scholar 

  • Laws AP, Gu Y, Marshall VM (2001) Biosynthesis, characterisation and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:567–625

    Article  Google Scholar 

  • Leal JA, Ruperez P, Gomez-Miranda B (1976) Ultrastructure of resting and germinating sclerotia of Botrytis cinerea. Trans Br Mycol Soc 72:463–468

    Article  Google Scholar 

  • Levander F, Radstrom P (2001) Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus. Appl Environ Microbiol 67:2734–2738

    Article  PubMed  CAS  Google Scholar 

  • Llaubères RM (1987) Les polysaccharides secretes dans les vins par Saccharomyces cerevisiae et Pediococcus sp. Thesis, University Bordeaux 2

    Google Scholar 

  • Llaubères RM, Richard B, Lonvaud A, Dubourdieu D, Fournet B (1990) Structure of an exocellu-lar β-d-glucan from Pediococcus sp., a wine lactic bacteria. Carbohydr Res 203:103–107

    Article  PubMed  Google Scholar 

  • Llull D, Garcia E, Lopez R (2001) Tts, a processive beta-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in Pneumococcus and other gram-positive species. J Biol Chem 276:21053–21061

    Article  PubMed  CAS  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria and the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76:317–331

    Article  PubMed  CAS  Google Scholar 

  • Lonvaud-Funel A, Joyeux A (1988) Une altération bactérienne des vins: la “maladie” des vins filants. Sci Aliments 8:33–49

    CAS  Google Scholar 

  • Lonvaud-Funel A, Guilloux Y, Joyeux A (1993) Isolation of a DNA probe for identification of glucan producing Pediococcus damnosus in wines. J Appl Bacteriol 74:41–47

    CAS  Google Scholar 

  • Louw C, La Grange D, Pretorius IS, van Rensburg P (2006) The effect of polysaccharide degrading wine yeast transformants on the efficiency of wine processing and wine flavour. J Biotechnol 125:447–461

    Article  PubMed  CAS  Google Scholar 

  • Lubbers S, Léger B, Charpentier C, Feuillat M (1993) Essais de colloides protecteurs d'extraits de parois de levures sur la stabilité tartrique d'un vin modèle. J Int Sci Vigne Vin 27:13–22

    CAS  Google Scholar 

  • Lubbers S, Charpentier C, Feuillat M, Voilley A (1994) Influence of yeast walls on the behavior of aroma compounds in a model wine. Am J Enol Vitic 45:29–33

    CAS  Google Scholar 

  • Lussier M, White AM, Sheraton J, di Paolo T, Treadwell J, Southard SB, Horenstein CI, Chen-Weiner J, Ram AF, Kapteyn JC, Roemer TW, Vo DH, Bondoc DC, Hall J, Zhong WW, Sdicu AM, Davies J, Klis FM, Robbins PW, Bussey H (1997) Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiaè. Genetics 147:435–450

    PubMed  CAS  Google Scholar 

  • Luthi H (1957) Symbiotic problems relating to the bacterial deterioration of wines. Am J Enol Vitic 8:176–181

    Google Scholar 

  • Mah TF, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  PubMed  CAS  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103:15611–15616

    Article  PubMed  Google Scholar 

  • Manca de Nadra MC, Strasser de Saad AM (1995) Polysaccharide production by Pediococcus pentosaceus from wine. Int J Food Microbiol 27:101–106

    Article  PubMed  CAS  Google Scholar 

  • Martinez MJ, Reyes F, Lahoz R, Perez-leblic MI (1983) Lytic enzymes in autolysis of Botrytis cinerea. FEMS Microbiol Lett 19:157–160

    Article  CAS  Google Scholar 

  • Martinez P, Perez-Rodriguez L, Benitez T (1997) Factors which affect velum formation by flor yeasts isolated from sherry wines. Syst Appl Microbiol 20:154–157

    CAS  Google Scholar 

  • Morata A, Gomez-Cordoves MC, Suberviola J, Bartolome B, Colomo B, Suarez JA (2003) Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. J Agric Food Chem 51:4084–4088

    Article  PubMed  CAS  Google Scholar 

  • Mozzi F, Vaningelgem F, Hébert EM, Van der Meulen R, Foulquié Moreno MR, Font de Valdez G, De Vuyst L (2006) Diversity of heteropolysaccharides producing LAB strains and their biopolymers. Appl Environ Microbiol 72:4431–4435

    Article  PubMed  CAS  Google Scholar 

  • Parascandola P, de Alteriis E, Sentandreu R, Zueco J (1997) Immobilisation and ethanol stress induced the same molecular response at the level of cell wall in growing yeast. FEMS Microbiol Lett 150:121–126

    PubMed  CAS  Google Scholar 

  • Pasteur L (1866) Etudes sur le vin. Imprimerie impériale, Paris

    Google Scholar 

  • Pellerin P, Cabanis JC (1998) Les glucides du vin. Eléments d'oenologie, vol 1, Tech & Doc, Lavoisier, Paris

    Google Scholar 

  • Peng X, Sun J, Iserentant D, Michiels C, Verachtert H (2001) Flocculation and co-flocculation of bacteria and yeasts. Appl Microbiol Biotechnol 55:777–781

    Article  PubMed  CAS  Google Scholar 

  • Pielken P, Stahmann P, Sahm H (1990) Increase in glucan formation by Botrytis cinerea and analysis of the adherent glucan. Appl Microb Biotechnol 33:1–6

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2000) Handbook of enology. Vol 1: The microbiology of wine and vinifications. Wiley, Chichester

    Google Scholar 

  • Riou V, Vernhet A, Doco T, Moutounet M (2002) Aggregation of grape seed tannins in model wine — effect of wine polysaccharides. Food Hydocolloids 16:17–23

    Article  CAS  Google Scholar 

  • Rizzo M, Ventrice D, Varone MA, Sidari R, Caridi A (2006) HPLC determination of phenolics adsorbed on yeasts. J Pharm Biomed Anal 42:46–55

    Article  PubMed  CAS  Google Scholar 

  • Ruas-Madiedo P, de los Reyes Gavilan CG (2005) Invited review: methods for the screening, isolation and characterisation of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856

    Article  PubMed  CAS  Google Scholar 

  • Schmid F, Stone BA, Brownlee RTC, McDougall BM, Seviour RJ (2006) Structure and assembly of epiglucan, the extracellular (1→3;1→6)-β-glucan produced by the fungus Epicoccum nigrum strain F19. Carbohydr Res 341:365–373

    Article  PubMed  CAS  Google Scholar 

  • Shimoi H, Kitagaki H, Ohmori H, Imura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387

    PubMed  CAS  Google Scholar 

  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352

    Article  PubMed  CAS  Google Scholar 

  • Stahmann KP, Pielken P, Schimz KL, Sahm H (1992) Degradation of extracellular β(1,3) (1,6)-d-glucan by Botryrtis cinerea. Appl Environ Microbiol 58:3347–3354

    PubMed  CAS  Google Scholar 

  • Stahmann KP, Monschau N, Sahm H, Koschel A, Gawronski M, Conrad H, Springer T, Kopp F (1995) Structural properties of native and sonicated cinerean, a β(1→3) (1→6)-d-glucan produced by Botrytis cinerea. Carbohydr Res 266:115–128

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1993) Microbial polysaccharides. In: Whistler RL and Miller JN (Eds). Industrial gums: polysaccharides and their derivatives, 3rd edition, pp 69–85. Academic, San Diego.

    Google Scholar 

  • Suzzi G, Romano P, Zambonelli C (1984) Flocculation of wine yeasts: frequency, differences, and stability of the character. Can J Microbiol 30:36–39

    Article  Google Scholar 

  • van Kranenburg R, Boels IC, Kleerebezem M, de Vos WM (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol 10:498–504

    Article  PubMed  Google Scholar 

  • Van Oevelen D, Verachtert H (1979) Slime production by brewery strains of Pediococcus cerevisiae. ASBC J 37:34–37

    Google Scholar 

  • Van Vuuren HJJ, Dicks LMT (1993) Leuconostoc oenos: a review. Am J Enol Vitic 44:99–112

    Google Scholar 

  • Velasco S, Arskod E, Paese M, Grage H, Iraztorza A, Radstrom P, van Niel EWJ (2006) Environmental factors influencing growth and exopolysaccharide formation by Pediococcus parvulus 2.6. Int J Food Microbiol 111:252–258

    Article  PubMed  CAS  Google Scholar 

  • Velasco SE, Yebra MJ, Monedero V, Ibarburu I, Duenas MT, Iraztorza A (2007) Influence of the carbohydrate source on β-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6. Int J food Microbiol 115:325–334

    Article  PubMed  CAS  Google Scholar 

  • Vernhet A, Pellerin P, Prieur C, Osmianski J, Moutounet M (1996) Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am J Enol Vitic 45:25–29

    Google Scholar 

  • Vernhet A, Pellerin P, Belleville MP, Planque J, Moutounet M (1999) Relative impact of major wine polysaccharides on the performances of an organic microfiltration membrane. Am J Enol Vitic 50:51–56

    CAS  Google Scholar 

  • Versari A, Parpinelli GP, Cattaneo M (1999) Leuconostoc oenos and malolactic fermentation in wine: a review. Int J Microbiol Biotechnol 23:447–455

    Article  CAS  Google Scholar 

  • Villetaz JC, Amado R, Neukom H, Horisberger M, Horman I (1980) Comparative structural studies of the d-mannans from a rosé wine and Saccharomyces uvarum. Carbohydr Res 81:341–344

    Article  Google Scholar 

  • Walling E (2003) La biosynthèse d'exopolysaccharides par les bactéries lactiques du vin: approche génétique, enzymatique, physiologique de la production de glucane par Pediococcus damnosus. Thesis, University Bordeaux 2, no. 1014

    Google Scholar 

  • Walling E, Dols-Lafargue M, Lonvaud-Funel A (2005a) Glucose fermentation kinetics and exopolysaccharide production by ropy Pediococcus damnosus IOEB 8801. Food Microbiol 22:71–78

    Article  CAS  Google Scholar 

  • Walling E, Gindreau E, Lonvaud-Funel A (2005b) A putative glucan synthase gene dps detected in exopolysaccharide-producing Pediococcus damnosus and Oenococcus oeni strains isolated from wine and cider. Int J Food Microbiol 98:53–62

    Article  CAS  Google Scholar 

  • Waters EJ, Pellerin P, Brillouet JM (1994) Saccharomyces mannoprotein that protects wine from protein haze. Carbohydr Polym 23:185–191

    Article  CAS  Google Scholar 

  • Werning ML, Ibarburu I, Duenas MT, Irastorza A, Navas J, Lopes P (2006) Pediococcus parvulus gtf gene encoding the GTF glucosyltransferase and its application for specific PCR detection of β-d-glucan producing bacteria in food and beverages. J Food Protect 69:161–169

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dols-Lafargue, M., Lonvaud-Funel, A. (2009). Polysaccharide Production by Grapes, Must, and Wine Microorganisms. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_13

Download citation

Publish with us

Policies and ethics