Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 762))

  • 1238 Accesses

Abstract

It is our common household experience that when the voltage drop across a fuse exceeds a limit, the fuse burns out. A fuse is nothing but a conductor that conducts uniform current under an applied voltage up to a certain limit beyond it burns out and becomes non-conducting. This is called fuse failure. Similarly, in a dielectric breakdown, a dielectric starts to conduct electricity when the voltage drop across it attains certain threshold value. The above two phenomena are examples of breakdown process that is described broadly as the failure of a physical attribute when the perturbing force driving it goes beyond a limiting value. The most common example of the process is the breaking of a material at a high stress beyond its strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Acharyya and B.K. Chakrabarti, Phys. Rev. E 53 140 (1996)

    Google Scholar 

  2. M. Acharyya and B.K. Chakrabarti, Physica A 224 254 (1996)

    Article  ADS  Google Scholar 

  3. M. Acharyya, P. Ray, and B.K. Chakrabarti, Physica A 224 287 (1996)

    Article  ADS  Google Scholar 

  4. C. Baudet, E. Charlaix, E. Clement, E. Guyon, F.P. Hulin, and C. Leroy. In: Scaling Phenomena in Disordered Systems, eds R. Pynn and A. Skjeltorp, p.399 (Plenum; New York, 1985)

    Google Scholar 

  5. P.D. Beale and P.M. Duxbury, Phys. Rev. B 37 2785 (1988)

    Article  ADS  Google Scholar 

  6. L. Benguigui, Phys. Rev. B 34 8176 (1986)

    Article  ADS  Google Scholar 

  7. D.J. Bergman and D. Stroud, in Sol. State Phys. 46 eds H. Ehrenreich and D. Turnbull, p.147 (Academic Press, New York, 1992)

    Google Scholar 

  8. D.R. Bowman and D. Stroud, Bull. Am. Phys. Soc. 30 563 (1985)

    Google Scholar 

  9. D.R. Bowman and D. Stroud, Phys. Rev. B 40 4641 (1989)

    Google Scholar 

  10. R.M. Bradley and K. Wu, Phys. Rev. E 50 R631 (1994)

    Article  ADS  Google Scholar 

  11. B.K. Chakrabarti. In: Non-Linearity and Breakdown in Soft Condensed Matter eds K.K. Bardhan, B.K. Chakrabarti, and A. Hansen, 9.71 (Springer-Verlag, Heidelberg, 1994)

    Google Scholar 

  12. B.K. Chakrabarti and L.G. Benguigui. In: Statistical Physics of Fracture and Breakdown Disordered Systems (Oxford Uninversity Press, Oxford 1997)

    MATH  Google Scholar 

  13. B.K. Chakrabarti, A.K. Roy, and S.S. Manna, J. Phys. C 21 L65 (1988)

    Article  ADS  Google Scholar 

  14. J.T. Chayes, L. Chayes, and R. Durret, J. Stat. Phys. 45 933 (1986)

    Article  MATH  ADS  Google Scholar 

  15. A. Coniglio, J. Phys. A: Math. Gen. 15 3829 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. L. de Arcengelis, S. Redner, and A. Conilgo, Phys. Rev. B 31 4725 (1985)

    Article  ADS  Google Scholar 

  17. P.G. de Gennes, J. Physique Lett. 52 L1 (1976)

    Article  Google Scholar 

  18. P.M. Duxbury, P.D. Beale, and P.L. Leath, Phys. Rev. Lett. 57 1052 (1986)

    Google Scholar 

  19. P.M. Duxbury, P.D. Beale, and P.L. Leath, Phys. Rev. B 36 367 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  20. P.M. Duxbury and P.L. Leath, J. Phys. A 20 L411 (1987)

    Article  ADS  Google Scholar 

  21. J.W. Essam, Rep. Prog. 43 833 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Family, Y.C. Zhang, and T. Vicsek, J. Phys. A 19 L733 (1986)

    Article  ADS  Google Scholar 

  23. E.J. Gumbel. In: Statistics of Extremes (Columbia University Press, New York, 1958)

    MATH  Google Scholar 

  24. B.I. Halperin, S. Feng, and P. Sen, Phys. Rev. Lett. 54 2391 (1985)

    Google Scholar 

  25. K. Kunz and B. Souillard, Phys. Rev. Lett. 40 133 (1978)

    Article  ADS  Google Scholar 

  26. P. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57 287 (1985)

    Article  ADS  Google Scholar 

  27. Y.S. Li and P.M. Duxbury, Phys. Rev. B 36 5411 (1987)

    Article  ADS  Google Scholar 

  28. C.J. Lobb, P.M. Hui, and D. Stroud, Phys. Rev. B 36 1956 (1987)

    Article  ADS  Google Scholar 

  29. S.S Manna and B.K. Chakrabarti, Phys. Rev. B 36 4078 (1987)

    Article  ADS  Google Scholar 

  30. P. Meakin, J. Phys. A: Math. Gen. 18 L661 (1985)

    Article  ADS  Google Scholar 

  31. P. Meakin. In: Fractals, Scaling and Growth far from Equilibrium (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  32. Y. Meir, A. Aharony, and A.B. Harris, Euro. Phys. Lett. 10 275 (1989)

    Article  ADS  Google Scholar 

  33. Y. Shapir, A. Aharony, and A.B. Harris, Phys. Rev. Lett. 56 976 (1986);

    Article  ADS  Google Scholar 

  34. B. Shapiro. In: Percolation Structure and Processes, eds G. Deutscher, R. Zallen, and J. Adler, p. 367 (Hilger, Bristol, 1983)

    Google Scholar 

  35. K.S. Mendelson, J. Appl. Phys. 46 917, 4740 (1975)

    Google Scholar 

  36. L. Niemeyer, L. Pietronero, and H.J. Wiesmann, Phys. Rev. Lett. 52 1033 (1984)

    Google Scholar 

  37. L. Niemeyer and F. Pinnekamp. In: Gaseous Dielectrics III, ed L.G. Christophorou, p. 379 (New York, Pergamon 1982)

    Google Scholar 

  38. P. Ray and B. K. Chakrabarti, J. Phys. C18 L185 (1985)

    ADS  Google Scholar 

  39. P. Ray and B. K. Chakrabarti, Solid State Commun. 53 477 (1985)

    Google Scholar 

  40. M. Sahimi, Application of Percolation Theory (Taylor and Francis, London, 1994)

    Google Scholar 

  41. M. Sahimi, Heterogeneous Materials II: Nonlinear and Breakdown Properties and Atomistic Modeling, p. 207 (Springer, 2002)

    Google Scholar 

  42. Y. Sawada, S. Ohta, M. Yamazaki, and H. Honjo, Phys. Rev. A 26 3997 (1982)

    Article  Google Scholar 

  43. A. Skal and Shklovskii, Sov. Phys.-Semicond. 8 1029 (1975)

    Google Scholar 

  44. D. Sornette, J. Physique 49 889 (1988)

    Article  MathSciNet  Google Scholar 

  45. H.E. Stanley, J. Phys. A: Math. and Gen. 10 L211 (1977)

    Article  ADS  Google Scholar 

  46. D. Stauffer, Phys. Rep. 54 1 (1979)

    Article  ADS  Google Scholar 

  47. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992)

    Google Scholar 

  48. D. Stauffer. In: Quantum and Semi-classical Percolation and Breakdown in Disordered Solids (Springer, Heidelberg, 2009)

    Google Scholar 

  49. R.B. Stinchcombe, P.M. Duxbury, and P.K. Shukla, J. Phys. A: Mathematical and General 19 3903 (1986)

    Google Scholar 

  50. H. Takayasu, Phys. Rev. Lett. 54 1099 (1985)

    Google Scholar 

  51. K.N. Tu, J. Appl. Phys. 94 5451 (2003)

    Google Scholar 

  52. W. Weibull, Fatigue Testing and Analysis of Results (Pergamon, New York, 1961)

    Google Scholar 

  53. S.M. Weiderhorn, Ann. Rev. Mater. Sci. 14 373 (1984)

    Article  ADS  Google Scholar 

  54. T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47 1400 (1981)

    Article  ADS  Google Scholar 

  55. K. Wu and R.M. Bradley, Phys. Rev. B 50 12468 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Samanta, D., Chakrabarti, B., Ray, P. (2009). Classical and quantum breakdown in disordered. In: Chakrabarti, B., Bardhan, K., Sen, A. (eds) Quantum and Semi-classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol 762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85428-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85428-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85427-2

  • Online ISBN: 978-3-540-85428-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics