Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 762))

Abstract

In one electron picture, the electronic states in a crystalline solid are extended Bloch states. This is a direct consequence of the Bloch-Floquet’s theorem. These quantum states are labelled by the wave-vector, к, and the band index, n. For Bloch states these are good quantum numbers. In a disordered solid, on the other hand, with the breakdown of long-ranged order, the wave-vector, к, is no longer a good quantum number. Of course, the states may still be extended, but cannot be characterized by к. The seminal paper by Anderson [1] stated that if the disorder is strong enough, all the electronic states become localized and at T = 0°o leads to a metal-insulator transition.He considered a tight-binding Hamiltonian with only on-site disorder characterized by a probability density of width W and a crystalline band-width of, B. Anderson showed that when the dimensionless parameter W/B is greater than a critical value (W/B) c all states in the band of the electron in the disordered lattice are localized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. N.F. Mott, Adv. Phys. 16, 49 (1967)

    Article  ADS  Google Scholar 

  3. A.F. Ioffe and A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

  4. N.F. Mott, Phil. Mag. 19, 835 (1969)

    Article  ADS  Google Scholar 

  5. E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  6. D.J. Thouless, Phys. Rep. 13, 93 (1974)

    Article  ADS  Google Scholar 

  7. V. Chaudhry and A. Mookerjee, Pramana, (1975)

    Google Scholar 

  8. A. McKinnon and B. Kramer, Phys. Rev. Lett. 147, 1546 (1981)

    Article  ADS  Google Scholar 

  9. A. McKinnon and B. Kramer, Z. Phys. B 53, 1 (1985)

    Article  ADS  Google Scholar 

  10. R.E. Borland, Proc. Roy. Soc. A 274, 529 (1963)

    Article  MATH  ADS  Google Scholar 

  11. M. Azbel Ya., Phys. Rev. B 28, 4106 (1983)

    Article  ADS  Google Scholar 

  12. J.B. Pendry, J. Phys. C: Solid State Phys. 20, 733 (1987)

    Article  ADS  Google Scholar 

  13. S.J. Bending and M.R. Beasley, Phys. Rev. B 35, 2548 (1987)

    Article  ADS  Google Scholar 

  14. M. Vaito and M.R. Beasley, Phys. Rev. B 35, 9926 (1987)

    Google Scholar 

  15. D. Popovic, A.B. Fowler, and S. Washburn, Phys. Rev. Lett. 67, 2870 (1991)

    Article  ADS  Google Scholar 

  16. N. Kumar, J. Phys. C: Solid State Phys. 16, L745 (1983)

    Article  ADS  Google Scholar 

  17. N. Kumar and A.M. Jayannavar, Phys. Rev. B 32, 3345 (1985)

    Article  ADS  Google Scholar 

  18. K.A. Muttalib, J. Picard and A.D. Stone, Phys. Rev. Lett. 59, 2473 (1987)

    Article  ADS  Google Scholar 

  19. T.J. Godin and R. Haydock, Phys. Rev. B 38, 5237 (1988)

    Article  ADS  Google Scholar 

  20. T.J. Godin and R. Haydock, Europhys. Lett. 14(2), 137 (1991)

    Article  ADS  Google Scholar 

  21. S. Kirkpatrick and T.P. Eggarter, Phys. Rev. B 6, 3598 (1972)

    Article  ADS  Google Scholar 

  22. N. Tit, N. Kumar, J.W. Halley, and H. Shore, Phys. Rev. B 47, 15988 (1993)

    Article  ADS  Google Scholar 

  23. R.E. Peierls, Z. Phys. 80, 763 (1933)

    Article  MATH  ADS  Google Scholar 

  24. J. Pimental and S.L.A. de Queiroz, J. Phys. A: Math. Phys. 22, L345 (1983)

    Article  Google Scholar 

  25. T. Odagaki and K.C. Chang, Phys. Rev. B 30, 1612 (1984)

    Article  ADS  Google Scholar 

  26. L.J. Root, J.D. Bauer, and J.L. Skinner, Phys. Rev. B 37, 5518 (1988)

    Article  ADS  Google Scholar 

  27. K.C. Chang and T. Odagaki, J. Phys. A: Math. Phys. 20, L1027 (1987)

    Article  ADS  Google Scholar 

  28. J. Stein and U. Krey, Z. Phys. B 37, 13 (1980)

    Article  ADS  Google Scholar 

  29. R. Raghavan and D.C. Mattis, Phys. Rev. B 23, 4791 (1981)

    Article  ADS  Google Scholar 

  30. R. Raghavan, Phys. Rev. 29, 748 (1984)

    Article  ADS  Google Scholar 

  31. J.T. Edwards and D.J. Thouless, J. Phys. C: Solid State Phys. 5, 807

    Google Scholar 

  32. D.C. Licciardelo and D.J. Thouless, J. Phys. C: Solid State Phys. 8, 4157 (1975)

    Article  ADS  Google Scholar 

  33. Th. Koslowski and W. von Neissen, Phys. Rev. B 42, 10342 (1990)

    Article  ADS  Google Scholar 

  34. J.P.G. Taylor and A. McKinnon, J. Phys. C: Solid State Phys. 1, 9963 (1989)

    Google Scholar 

  35. C.M. Soukoulis and G.S. Grest, Phys. Rev. B 44, 4685 (1991)

    Article  ADS  Google Scholar 

  36. H.M. Pastawski, J.F. Weisz, and S. Albornoz, Phys. Rev. B 28, 6896 (1983)

    Article  ADS  Google Scholar 

  37. Shapir Y., Aharony A. and Harris A.B., Phys. Rev. Lett., 49 486 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  38. Meir Y., Aharony A. and Harris A.B., Phys. Rev. Lett., 56 976 (1986)

    Article  ADS  Google Scholar 

  39. Meir Y., Aharony A. and Harris A.B., Europhys. Lett., 10 275 (1989)

    Article  ADS  Google Scholar 

  40. J.L. Gammel Padé Approximants and their Applications (Acadmeic Press, New York, 1973)

    Google Scholar 

  41. R. Haydock, Solid State Physics (Aacdemic Press, New York, 35, 216, 1980)

    Google Scholar 

  42. R. Haydock, Philos. Mag. B 43, 203 (1981)

    Article  Google Scholar 

  43. R. Haydock and R. Te, Phys. Rev. B 49, 10845 (1994)

    Article  ADS  Google Scholar 

  44. R. Haydock and R. Te, Phys. Rev. B 57 296 (1997)

    Article  ADS  Google Scholar 

  45. A. Aharony and D. Stauffer, Inroduction to Percolation Theory (Taylor and Francis, London, 1991)

    Google Scholar 

  46. D.E. Khmelnitskii, Physica 126 B + C 235 (1984)

    Google Scholar 

  47. R. Haydock, Philos. Mag. 53, 554 (1986)

    Google Scholar 

  48. J.L. Picard and G. Sharma, J. Phys. C: Solid State Phys. 14, L127, L617 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dasgupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mookerjee, A., Saha-Dasgupta, T., Dasgupta, I. (2009). Quantum Transmittance Through Random Media. In: Chakrabarti, B., Bardhan, K., Sen, A. (eds) Quantum and Semi-classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol 762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85428-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85428-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85427-2

  • Online ISBN: 978-3-540-85428-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics