Skip to main content

Spectroscopic studies of micro-explosions

  • Conference paper
Shock Waves

Summary

NONEL tube finds vast applications in civil and military because of its safe and confined explosion technique. Spectroscopic and chemical analysis of a NONEL tube with an uniform mixture of HMX and Al is reported here. Peak temperature obtained at the open end of the NONEL tube due to the detonation of the explosive has been calculated using Planck’s radiation law. The products of the chemical reaction taking place due to the ignition of HMX + Al are characterized using FTIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.C. Yang, H.P. Do: Nonelectrical Tube Explosive Transfer System. In: AIAA Journal vol 38 (12), 2000, 2260.

    Google Scholar 

  2. F. Goetz, T.B. Brill, J.R. Ferraro: J. Phys. Chem. 82, 1912 (1978).

    Article  Google Scholar 

  3. P. Main, R.E. Cobbledick, R.W.H. Small: Acta Cryst. 41, 1351 (1985).

    Article  Google Scholar 

  4. T.R. Gibbs, A. Popolato (Eds.): LASL Explosive Property Data, (University of California Press, Berkley, CA, 1980).

    Google Scholar 

  5. A.G. Gaydon, H.G. Wolfhard: Flames: Their structure, radiation and temperature, IIIrd edition (Chapman and Hall Ltd., London, 1970).

    Google Scholar 

  6. F.C. Gibson, M.L. Bowser, C.R. Summers, F.H. Scott, C.M. Mason: J. App. Phys. 29, 628 (1958).

    Article  Google Scholar 

  7. B. Leal-Crouzet1, R. Bouriannes, G. Baudin1, J.C. Goutelle: Eur. Phys. J. App. Phys. 8, 189 (1999).

    Google Scholar 

  8. R. Shaw, F.E. Walker: J. Phys. Chem. 81, 2572 (1977)

    Article  Google Scholar 

  9. M.L. Hobbs: Thermochimica Acta 384, 291 (2002)

    Article  Google Scholar 

  10. C.J. Cobos: Journal of Molecular Structure: THEOCHEM 714, 147 (2005)

    Article  Google Scholar 

  11. S. Zhang, T.N. Truong: J. Phys. Chem. A 104, 7304 (2000)

    Article  Google Scholar 

  12. T.B. Brill, P.J. Brush: Phil. Trans. Royal Soc. London A 339, 377 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hegde, G., Pathak, A., Jagadeesh, G., Oommen, C., Arunan, E., Reddy, K. (2009). Spectroscopic studies of micro-explosions. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85168-4_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85168-4_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85167-7

  • Online ISBN: 978-3-540-85168-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics