Skip to main content

Explosive eruptions of volcanos: simulation shock tube methods and multi-phase mathematical models

  • Conference paper
Shock Waves
  • 2333 Accesses

Summary

The paper presents the short survey both of theoretical and experimental results as well as some approaches to the creation of unsteady multi-phase mathematical models and to the working out of the experimental methods of the simulation of the eruption processes based on the method of hydrodynamic pulse shock tubes. hydrodynamic shock tube The fullsystem of the equations for the study of the initial stage of explosive eruption as well as the results of numerical studies on the magma state dynamics taking into account the gravity, diffusive processes and dynamically changing viscosity will be considered. The experimental simulation of magma fragmentation carried out within the framework of shock tube methods has shown, that the magma fragmentation can be happened also in a result of flow stratification: the flow division into the system of the vertical jets of the spatial form which then are disintegrated on separate fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mattox T. N. and Mangan M. T.: Littoral hydrovolcanic explosions: a case study of lava – seawater interaction at Kilauea Volcano, Journal of Volcanology and Geothermal Research, (1997), v. 75, p. 1–17.

    Article  Google Scholar 

  2. Woods Andrew W.: The dynamics of explosive volcanic eruptions, Reviews of geophysics, (1995), V. 33, No. 4, p. 495–530.

    Article  Google Scholar 

  3. Gerst, A, et al: The First Second of a Strombolian Eruption: Velocity Observations at Erebus Volcano, Antarctica. EOS Trans. AGU, 87(52), Fall Meet. Suppl., (2006), Abstract V31G-04.

    Google Scholar 

  4. Gilbert J.S. and Sparks R.S.J.(eds): The Physics of Explosive Volcanic Eruptions, Geological Society, London, Special Publications, V. 145, (1998).

    Google Scholar 

  5. Kedrinskii V. K. : Nonlinear problems of cavitation breakdown of liquids under explosive loading, J. Appl. Mech. Tech. Phys., No. 3, p. 361–366, (1993).

    Article  Google Scholar 

  6. Dobran F. : Non-equilibrium flow in volcanic conduits and application of the eruption of Mt. St. Helens on May 18 1980 and Vesuvius in Ad. 79, J. Volcanol. Geotherm. Res., V. 49, 285–311 (1992).

    Google Scholar 

  7. Kedrinskii V.K., Makarov A.I., Stebnovsky S.V., and Takayama K.: Explosive Volcanic Eruption: Some Approaches to Simulation. Combustion, Explosion and Shock Waves, (2005), V. 41, No. 6, p. 193–201, Kluwer Academic/Plenum Publisher.

    Article  Google Scholar 

  8. Wilson L. : Relationships between pressure, volatile content, and eject in three types of volcanic explosion, J. Volcanol. Geotherm. Res., V. 8, p. 297–313, (1980).

    Article  Google Scholar 

  9. Slezin Yu. B. : Mechanism of Volcanic Eruptions (Steady Model) [in Russian], Nauchnyi Mir, Moscow, (1998).

    Google Scholar 

  10. Papale P., Neri A., and Macedorio G.: The role of magma composition and water content in explosive eruptions. 1. Conduit ascent dynamics, J. Volcanol. Geotherm. Res., V. 87, p. 75–93, (1998).

    Article  Google Scholar 

  11. Barmin A. A. and Mel’nik O. E.: Hydrodynamics of volcanic eruptions, Usp. Mekh., No. 1, p. 32–60, (2002).

    Google Scholar 

  12. Lyakhovsky V., Hurwitz S., and Navon O.: Bubble growth in rhyolitic melts: Experimental and numerical investigation, Bull. Volcanol., V. 58, No. 1, p. 19–32, (1996).

    Google Scholar 

  13. Navon O., Chekhmir A., and Lyakhovsky V.: Bubble growth in highly viscous melts: Theory, experiments, and autoexplosivity of dome lavas, Earth Planet. Sci. Lett., V. 160, p. 763–776, (1998).

    Google Scholar 

  14. Proussevitch A.A. and Sahagian D.L.: Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems, J. Geophys. Res., V. 101, No. 8, p. 17 447–17 456, (1996).

    Google Scholar 

  15. Proussevitch A.A. and Sahagian D.L.: Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling, J. Geophys. Res., V. 103, No. B8, p. 18 223–18 251, (1998).

    Google Scholar 

  16. Hort M.: Abrupt change in magma liquidus temperature because of volatile loss or magma mixing: Effects on nucleation, crystal growth and thermal history of the magma, J. Petrology, V. 39, No. 5, p. 1063–1076, (1998).

    Google Scholar 

  17. Chernov A.A.: A model of magma solidification during explosive volcanic eruptions, J. Appl. Mech. Tech. Phys., V. 44, No. 5, p. 667–675, (2003).

    Article  Google Scholar 

  18. Stolper E.: Water in silicate glasses: An infrared spectroscopic study, Contrib. Mineral. Petrol., V. 81, p. 1–17, (1982).

    Article  Google Scholar 

  19. Kedrinskii V.K., Davydov M.N., Chernov A.A., and Takayama K: The Initial Stage of Explosive Volcanic Eruption: The Dynamics of the Magma State in Depression Waves, Doklady Physics, V. 51, No 3, p. 140–143, (2006), Pleiades Publishing, Inc.

    Google Scholar 

  20. Persikov E.S.: The viscosity of magmatic liquids: Experiment, generalized patterns. A model for calculation and prediction. Applications,Physical Chemistry of Magmas V. 9 Advances in Physical Geochemistry, Springer-Verlag, New York (1991), p. 1–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kedrinskiy, V. (2009). Explosive eruptions of volcanos: simulation shock tube methods and multi-phase mathematical models. In: Hannemann, K., Seiler, F. (eds) Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85168-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85168-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85167-7

  • Online ISBN: 978-3-540-85168-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics