Skip to main content

The Geometry of the Neighbor-Joining Algorithm for Small Trees

  • Conference paper
Algebraic Biology (AB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5147))

Included in the following conference series:

Abstract

In 2007, Eickmeyer et al. showed that the tree topologies outputted by the Neighbor-Joining (NJ) algorithm and the balanced minimum evolution (BME) method for phylogenetic reconstruction are each determined by a polyhedral subdivision of the space of dissimilarity maps \({\mathbb R}^{n \choose 2}\), where n is the number of taxa. In this paper, we will analyze the behavior of the Neighbor-Joining algorithm on five and six taxa and study the geometry and combinatorics of the polyhedral subdivision of the space of dissimilarity maps for six taxa as well as hyperplane representations of each polyhedral subdivision. We also study simulations for one of the questions stated by Eickmeyer et al., that is, the robustness of the NJ algorithm to small perturbations of tree metrics, with tree models which are known to be hard to be reconstructed via the NJ algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atteson, K.: The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica 25, 251–278 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bryant, D.: On the uniqueness of the selection criterion in neighbor-joining. J. Classif. 22, 3–15 (2005)

    Article  MATH  Google Scholar 

  3. Eickmeyer, K., Huggins, P., Pachter, L., Yoshida, R.: On the optimality of the neighbor-joining algorithm. Algorithms in Molecular Biology 3 (2008)

    Google Scholar 

  4. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  5. Galtier, N., Gascuel, O., Jean-Marie, A.: Markov models in molecular evolution. In: Nielsen, R. (ed.) Statistical Methods in Molecular Evolution, pp. 3–24 (2005)

    Google Scholar 

  6. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes — Combinatorics and Computation, pp. 43–74 (2000)

    Google Scholar 

  7. Kimura, M.: A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120 (1980)

    Article  Google Scholar 

  8. Neyman, J.: Molecular studies of evolution: a source of novel statistical problems. In: Gupta, S., Yackel, J. (eds.) Statistical decision theory and related topics, pp. 1–27. New York Academic Press, London (1971)

    Google Scholar 

  9. Jukes, H.T., Cantor, C.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism, pp. 21–32. New York Academic Press, London (1969)

    Google Scholar 

  10. Levy, D., Yoshida, R., Pachter, L.: Neighbor-joining with phylogenetic diversity estimates. Molecular Biology and Evolution 23, 491–498 (2006)

    Article  Google Scholar 

  11. Mihaescu, R., Levy, D., Pachter, L.: Why Neighbor-Joining Works. Algorithmica (2008)

    Google Scholar 

  12. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48 (1994)

    Google Scholar 

  13. Ota, S., Li, W.H.: NJML: A Hybrid algorithm for the neighbor-joining and maximum likelihood methods. Molecular Biology and Evolution 17(9), 1401–1409 (2000)

    Google Scholar 

  14. Saitou, N., Nei, M.: The neighbor joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)

    Google Scholar 

  15. Gascuel, O., Steel, M.: Neighbor-joining revealed. Molecular Biology and Evolution 23, 1997–2000 (2006)

    Article  Google Scholar 

  16. Studier, J.A., Keppler, K.J.: A note on the neighbor-joining method of Saitou and Nei. Molecular Biology and Evolution 5, 729–731 (1988)

    Google Scholar 

  17. Yang, Z.: PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS 15, 555–556 (1997)

    Google Scholar 

  18. Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings of the Royal Society B: Biological Sciences 267, 109–116 (2000)

    Article  Google Scholar 

  19. Ziegler, G.: Lectures on Polytopes. Springer, Heidelberg (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katsuhisa Horimoto Georg Regensburger Markus Rosenkranz Hiroshi Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eickmeyer, K., Yoshida, R. (2008). The Geometry of the Neighbor-Joining Algorithm for Small Trees. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Algebraic Biology. AB 2008. Lecture Notes in Computer Science, vol 5147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85101-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85101-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85100-4

  • Online ISBN: 978-3-540-85101-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics