Skip to main content

Property Preservation along Embedding of Biological Regulatory Networks

  • Conference paper
Algebraic Biology (AB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5147))

Included in the following conference series:

  • 643 Accesses

Abstract

In the course of understanding biological regulatory networks (BRN), scientists usually start by studying small BRNs that they believe to be of particular importance to represent a biological function, and then, embed them in the whole network. Such a reduction can lead to neglect relevant regulations and to study a network whose properties can be very different from the properties of this network viewed as a part of the whole. In this paper we study, from a logical point of view, the preservation of properties inherited from small BRNs. The signature of BRN, constituted by a graph, is one of the distinctive features on which embeddings can be defined which leads us to give a first condition on the subgraphs ensuring the preservation of properties of the embedded graphs.

This work is performed within the European project GENNETEC (GENetic NeTworks: Emergence and Complexity) STREP 34952.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiguier, M., Le Gall, P., Mabrouki, M.: A formal denotation of complex systems: how to use algebraic refinement to deal with complexity of systems, Tech. report (2008), http://www.epigenomique.genopole.fr/~aiguier

  2. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  3. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  4. de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)

    Article  Google Scholar 

  5. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  6. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer science formal models and semantics, vol. b, pp. 995–1072. MIT Press, Cambridge (1990)

    Google Scholar 

  7. Glass, L., Kauffman, S.A.: The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  8. Goguen, J.A., Burstall, R.-M.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mateus, D., Gallois, J.-P., Comet, J.-P., Le Gall, P.: Symbolic modeling of genetic regulatory networks. Journal of Bioinformatics and Computational Biology (2007)

    Google Scholar 

  10. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995)

    Article  MATH  Google Scholar 

  11. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - ii. immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297 (1995)

    MATH  Google Scholar 

  12. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73(4), 631–656 (1978)

    Article  Google Scholar 

  13. Thomas, R., d’Ari, R.: Biological feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  14. van Glabbeck, R., Weijland, W.P.: Refinement in branching time semantics. In: Proc. IFIP Conference, pp. 613–618 (1989)

    Google Scholar 

  15. Wehrheim, H.: Inheritance of temporal logic properties. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 79–93. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katsuhisa Horimoto Georg Regensburger Markus Rosenkranz Hiroshi Yoshida

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mabrouki, M., Aiguier, M., Comet, JP., Le Gall, P. (2008). Property Preservation along Embedding of Biological Regulatory Networks. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds) Algebraic Biology. AB 2008. Lecture Notes in Computer Science, vol 5147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85101-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85101-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85100-4

  • Online ISBN: 978-3-540-85101-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics