Skip to main content

A Particle-Partition of Unity Method Part VIII: Hierarchical Enrichment

  • Conference paper
Meshfree Methods for Partial Differential Equations IV

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 65))

  • 1273 Accesses

Abstract

This paper is concerned with automatic enrichment in the particle-partition of unity method (PPUM). The goal of our automatic enrichment is to recover the optimal convergence rate of the uniform h-version independent of the regularity of the solution. Hence, we employ enrichment not only for modeling purposes but rather to improve the approximation properties of the numerical scheme. To this end we enrich our PPUM function space in an automatically determined enrichment zone hierarchically near the singularities of the solution. To overcome the ill-conditioning of the enriched shape functions we present an appropriate local preconditioner. The results of our numerical experiments clearly show that the hierarchically enriched PPUM recovers the optimal convergence rate globally and even shows a kind of superconvergence within the enrichment zone. The condition number of the stiffness matrix is independent of the employed enrichment and the relative size of the enrichment zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuška, U. Banerjee, and J. E. Osborn, Survey of Meshless and Generalized Finite Element Methods: A Unified Approach, Acta Numerica, (2003), pp. 1–125.

    Google Scholar 

  2. I. Babuška and J. M. Melenk, The Partition of Unity Method, Int. J. Numer. Meth. Engrg., 40 (1997), pp. 727–758.

    Article  MATH  Google Scholar 

  3. S. Beissel and T. Belytschko, Nodal Integration of the Element-Free Galerkin Method, Comput. Meth. Appl. Mech. Engrg., 139 (1996), pp. 49–74.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Engrg., 45 (1999), pp. 601–620.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Belytschko, Y. Y. Lu, and L. Gu, Crack propagation by element-free galerkin methods, Engrg. Frac. Mech., 51 (1995), pp. 295–315.

    Article  Google Scholar 

  6. T. Belytschko, N. Moës, S. Usui, and C. Parimi, Arbitrary discontinuities in finite elements, Int. J. Numer. Meth. Engrg., 50 (2001), pp. 993–1013.

    Article  MATH  Google Scholar 

  7. E. Chahine, P. Laborde, J. Pommier, Y. Renard, and M. Salaün, Study of some optimal xfem type methods, in Advances in Meshfree Techniques, V. M. A. Leitao, C. J. S. Alves, and C. A. M. Duarte, eds., vol. 5 of Computational Methods in Applied Sciences, Springer, 2007.

    Google Scholar 

  8. J. S. Chen, C. T. Wu, S. Yoon, and Y. You, A Stabilized Conforming Nodal Integration for Galerkin Mesh-free Methods, Int. J. Numer. Meth. Engrg., 50 (2001), pp. 435–466.

    Article  MATH  Google Scholar 

  9. J. Dolbow and T. Belytschko, Numerical Integration of the Galerkin Weak Form in Meshfree Methods, Comput. Mech., 23 (1999), pp. 219–230.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. A. Duarte, L. G. Reno, and A. Simone, A higher order generalized fem for through-the-thickness branched cracks, Int. J. Numer. Meth. Engrg., 72 (2007), pp. 325–351.

    Article  MathSciNet  Google Scholar 

  11. C. A. M. Duarte, I. Babuška, and J. T. Oden, Generalized. Finite Element Methods for Three Dimensional Structural Mechanics Problems, Comput. Struc., 77 (2000), pp. 215–232.

    Article  Google Scholar 

  12. C. A. M. Duarte, O. N. H. T. J. Liszka, and W. W. Tworzydlo, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Int. J. Numer. Meth. Engrg., 190 (2001), pp. 2227–2262.

    MATH  Google Scholar 

  13. M. Griebel, P. Oswald, and M. A. Schweitzer, A Particle-Partition of Unity Method—Part VI: A p-robust Multilevel Preconditioner, in Meshfree Methods for Partial Differential Equations II, M. Griebel and M. A. Schweitzer, eds., vol. 43 of Lecture Notes in Computational Science and Engineering, Springer, 2005, pp. 71–92.

    Google Scholar 

  14. M. Griebel and M. A. Schweitzer, A Particle-Partition of Unity Method— Part II: Efficient Cover Construction and Reliable Integration, SIAM J. Sci. Comput., 23 (2002), pp. 1655–1682.

    Article  MATH  MathSciNet  Google Scholar 

  15. -, A Particle-Partition of Unity Method—Part III: A Multilevel Solver, SIAM J. Sci. Comput., 24 (2002), pp. 377–409.

    Article  MATH  MathSciNet  Google Scholar 

  16. -, A Particle-Partition of Unity Method—Part V: Boundary Conditions, in Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt and H. Karcher, eds., Springer, 2002, pp. 517–540.

    Google Scholar 

  17. -, A Particle-Partition of Unity Method—Part VII: Adaptivity, in Meshfree Methods for Partial Differential Equations III, M. Griebel and M. A. Schweitzer, eds., vol. 57 of Lecture Notes in Computational Science and Engineering, Springer, 2006, pp. 121–148.

    Google Scholar 

  18. N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Engrg., 46 (1999), pp. 131–150.

    Article  MATH  Google Scholar 

  19. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1970–1971), pp. 9–15.

    Article  MathSciNet  Google Scholar 

  20. J. T. Oden and C. A. Duarte, Clouds, Cracks and FEM’s, Recent Developments in Computational and Applied Mechanics, 1997, pp. 302–321.

    Google Scholar 

  21. M. A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, vol. 29 of Lecture Notes in Computational Science and Engineering, Springer, 2003.

    Google Scholar 

  22. -, An adaptive hp-version of the multilevel particle-partition of unity method, Comput. Meth. Appl. Mech. Engrg., (2008), accepted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schweitzer, M.A. (2008). A Particle-Partition of Unity Method Part VIII: Hierarchical Enrichment. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations IV. Lecture Notes in Computational Science and Engineering, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79994-8_16

Download citation

Publish with us

Policies and ethics