Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 195))

Abstract

The list of prohibited substances in sports includes a group of masking agents that are forbidden in both in- and out-of-competition doping tests. This group consists of a series of compounds that are misused in sports to mask the administration of other doping agents, and includes: diuretics, used to reduce the concentration in urine of other doping agents either by increasing the urine volume or by reducing the excretion of basic doping agents by increasing the urinary pH; probenecid, used to reduce the concentration in urine of acidic compounds, such as glucuronoconjugates of some doping agents; 5α-reductase inhibitors, used to reduce the formation of 5α-reduced metabolites of anabolic androgenic steroids; plasma expanders, used to maintain the plasma volume after misuse of erythropoietin or red blood cells concentrates; and epitestosterone, used to mask the detection of the administration of testosterone. Diuretics may be also misused to achieve acute weight loss before competition in sports with weight categories. In this chapter, pharmacological modes of action, intended pharmacological effects for doping purposes, main routes of biotransformation and analytical procedures used for anti-doping controls to screen and confirm these substances will be reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abshagen U et al (1976) Pharmacokinetics of spironolactone in man. Naunyn Schmiedebergs Arch Pharmacol 296:37–45

    Google Scholar 

  • Adams HA et al (1998) Volume replacement solutions – pharmacology and clinical use. Anasthesiol Intensivmed Notfallmed Schmerzther 33:2–17

    Google Scholar 

  • Aguilera R et al (2002) Detection of epitestosterone doping by isotope ratio mass spectrometry. Clin Chem 48:629–636

    Google Scholar 

  • Amendola L et al (2003) Rapid determination of diuretics in human urinbe by gas chromatography–mass spectrometry following microwave assisted derivatization. Anal Chim Acta 475:125–136

    Google Scholar 

  • Andreasen F et al (1981) The use of HPLC to elucidate the metabolism and urinary excretion of furosemide and its metabolic products. Acta Pharmacol Toxicol (Copenh) 49:223–229

    Google Scholar 

  • Andriole G et al (2004) Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J Urol 172:1399–1403

    Google Scholar 

  • Armstrong LE et al (1985) Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc 17:456–461

    Google Scholar 

  • Avois L et al (2004) Rapid screening of HES in urine with colorimetric detection. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (12). SportVerlag Strauss, Köln, pp 371–376

    Google Scholar 

  • Barroso MB et al (1997) Gas chromatographic–mass spectrometric analysis of the loop diuretic torasemide in human urine. J Chromatogr B Biomed Sci Appl 690:105–113

    Google Scholar 

  • Beermann B, Groschinsky-Grind M (1977) Pharmacokinetics of hydrochlorothiazide in man. Eur J Clin Pharmacol 12:297–303

    Google Scholar 

  • Beermann B et al (1976) Absorption, metabolism, and excretion of hydrochlorothiazide. Clin Pharmacol Ther 19:531–537

    Google Scholar 

  • Beermann B et al (1977) Pharmacokinetics of bendroflumethiazide. Clin Pharmacol Ther 22:385–388

    Google Scholar 

  • Bellemare V et al (2005) Characterization of 17alpha-hydroxysteroid dehydrogenase activity (17alpha-HSD) and its involvement in the biosynthesis of epitestosterone. BMC Biochem 6:12

    Google Scholar 

  • Beyer J et al (2005) Screening procedure for detection of diuretics and uricosurics and/or their metabolites in human urine using gas chromatography–mass spectrometry after extractive methylation. Ther Drug Monit 27:509–520

    Google Scholar 

  • Bhardwa J et al (2007) Finasteride and doxazosin alone or in combination for the treatment of benign prostatic hyperplasia. Expert Opin Pharmacother 8:1337–1344

    Google Scholar 

  • Boles Ponto LL, Schoenwald RD (1990) Furosemide: a pharmacokinetic/pharmacodynamic review (part I). Clin Pharmacokinet 18:381–408

    Google Scholar 

  • Brater DC et al (1983a) Effects of piretanide in normal subjects. Clin Pharmacol Ther 34:324–330

    Google Scholar 

  • Brater DC et al (1983b) Bumetanide and furosemide. Clin Pharmacol Ther 34:207–213

    Google Scholar 

  • Brooks RV, Giuliani G (1964) Epitestosterone:isolation from human urine and experiments on possible precursors. Steroids 4:101–116

    Google Scholar 

  • Brunelli C et al (2006) High-speed gas chromatography in doping control:fast-GC and fast-GC/MS determination of beta-adrenoceptor ligands and diuretics. J Sep Sci 29:2765–2771

    Google Scholar 

  • Burke A et al (2005) Analgesic-antipyretic agents; pharmacotherapy of gout. Goodman & Gilman’s The pharmacological basis of therapeutics. McGraw-Hill, Medical Publishing Division, New York, pp 671–715

    Google Scholar 

  • Caldwell JE (1987) Diuretic therapy and exercise performance. Sports Med 4:290–304

    Google Scholar 

  • Caldwell JE et al (1984a) Differential effects of sauna-, diuretic-, and exercise-induced hypohydration. J Appl Physiol 57:1018–1023

    Google Scholar 

  • Caldwell JE et al (1984b) Diuretic therapy, physical performance, and neuromuscular function. Physician Sportsmed 12:73–85

    Google Scholar 

  • Campíns P et al (1991) Solid-phaseextraction techniques for assay of diuretics in human urine samples. J Liq Chromatogr 14:3575–3590

    Google Scholar 

  • Campíns P et al (1993) Improved detection limits for screening of diuretics by coupled liquid chromatography and ultraviolet-visible spectrophotometry. J Chromatogr B Biomed Appl 612:245–251

    Google Scholar 

  • Campins and Falcó (1994) Column-switching techniques for screening of diuretics and probenecid in urine samples. Anal Chem 66:244–248

    Google Scholar 

  • Canguven O, Burnett AL (2008) The Effect of 5 {alpha}-reductase inhibitors on erectile function. J Androl 29(5):514–523

    Google Scholar 

  • Carlin JR et al (1992) Disposition and pharmacokinetics of [14C]finasteride after oral administration in humans. Drug Metab Dispos 20:148–155

    Google Scholar 

  • Carreras D et al (1994) Comparison of derivatization procedures for the determination of diuretics in urine by gas chromatography–mass spectrometry. J Chromatogr A 683:195–202

    Google Scholar 

  • Catlin DH et al (2002) Effects of androstenedione administration on epitestosterone metabolism in men. Steroids 67:559–564

    Google Scholar 

  • Cawley AT et al (2004) Searching for new markers of endogenous steroid administration in athletes: “looking outside the metabolic box”. Forensic Sci Int 143:103–114

    Google Scholar 

  • Chaffman M et al (1984) Indapamide. A review of its pharmacodynamic properties and therapeutic efficacy in hypertension. Drugs 28:189–235

    Google Scholar 

  • Chapron DJ et al (1985) Influence of advanced age on the disposition of acetazolamide. Br J Clin Pharmacol 19:363–371

    Google Scholar 

  • Clissold SP, Brogden RN (1985) Piretanide. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 29:489–530

    Google Scholar 

  • Cooper SF et al (1989) Comprehensive screening procedure for diuretics in urine by high-performance liquid chromatography. J Chromatogr 489:65–88

    Google Scholar 

  • Cowan DA et al (2008) Ion trap MS/MS of intact testosterone and epitestosterone conjugates – adducts, fragile ions and the advantages of derivatisation. Steroids 73:621–628

    Google Scholar 

  • Cunningham RF et al (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 6:135–151

    Google Scholar 

  • Cutler RE, Blair AD (1979) Clinical pharmacokinetics of frusemide. Clin Pharmacokinet 4:279–296

    Google Scholar 

  • De Croo F et al (1985) High-performance liquid chromatographic behaviour of some pharmaceutically important thiazide, loop and potassium-sparing diuretics. J Chromatogr 325:395–411

    Google Scholar 

  • de la Torre X et al (1997) Testosterone detection in different ethnic groups. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (4). Sport & Buch Strauss, Köln

    Google Scholar 

  • Dehennin L (1993) Secretion by the human testis of epitestosterone, with its sulfoconjugate and precursor androgen 5-androstene-3 beta, 17 alpha-diol. J Steroid Biochem Mol Biol 44:171–177

    Google Scholar 

  • Delbeke FT, Debackere M (1985) The influence of diuretics on the excretion and metabolism of doping agents – I. Mephentermine. J Pharm Biomed Anal 3:141–148

    Google Scholar 

  • Delbeke FT, Debackere M (1986a) The influence of diuretics on the excretion and metabolism of doping agents. II. Phentermine. Arzneimittelforschung 36:134–137

    Google Scholar 

  • Delbeke FT, Debackere M (1986b) The influence of diuretics on the excretion and metabolism of doping agents. III. Etilamfetamine. Arzneimittelforschung 36:1413–1416

    Google Scholar 

  • Delbeke FT, Debackere M (1988) The influence of diuretics on the excretion and metabolism of doping agents. Part IV – Caffeine. Biopharm Drug Dispos 9:137–145

    Google Scholar 

  • Delbeke FT, Debackere M (1991a) The influence of diuretics on the excretion and metabolism of doping agents – V. Dimefline. J Pharm Biomed Anal 9:23–28

    Google Scholar 

  • Delbeke FT, Debackere M (1991b) The influence of diuretics on the excretion and metabolism of doping agents: Part VI. Pseudoephedrine. Biopharm Drug Dispos 12:37–48

    Google Scholar 

  • Deventer K et al (2002) Screening for 18 diuretics and probenecid in doping analysis by liquid chromatography–tandem mass spectrometry. Biomed Chromatogr 16:529–535

    Google Scholar 

  • Deventer K et al (2005) Simultaneous determination of beta-blocking agents and diuretics in doping analysis by liquid chromatography/mass spectrometry with scan-to-scan polarity switching. Rapid Commun Mass Spectrom 19:90–98

    Google Scholar 

  • Deventer K et al (2006) Improved clean-up for the detection of hydroxyethylstarch (HES). In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (14). SportVerlag Strauss, Köln, pp 71–78

    Google Scholar 

  • Dirks JH and Sutton RAL (1986) Diuretics. Physiology, pharmacology and clinical use, Elsevier Health Sciences (1), pp 396

    Google Scholar 

  • Donike M et al (1984) Routinebestimmung von Anabolika in Harn. Dstch Z Sportmedizin 35:14–24

    Google Scholar 

  • Donike M et al (1995) Detection of dihydrotestosterone (DHT) doping: alterations in the steroid profile and reference ranges for DHT and its 5 alpha-metabolites. J Sports Med Phys Fitness 35:235–250

    Google Scholar 

  • Ehrhardt JD (1992) Negative-ion mass spectra of methylated diuretics. Rapid Commun Mass Spectrom 6:349–351

    Google Scholar 

  • Falk O et al (1988) Effect of ethanol on the ratio between testosterone and epitestosterone in urine. Clin Chem 34:1462–1464

    Google Scholar 

  • Feit PW et al (1973) GLC determination and urinary recovery of bumetanide in healthy volunteers. J Pharm Sci 62:375–379

    Google Scholar 

  • Fleuren HL et al (1979a) Absolute bioavailability of chlorthalidone in man: a cross-over study after intravenous and oral administration. Eur J Clin Pharmacol 15:35–50

    Google Scholar 

  • Fleuren HL et al (1979b) Differential potentiometric method for determining dissociation constants of very slightly water-soluble drugs applied to the sulfonamide diuretic chlorthalidone. J Pharm Sci 68:1056–1058

    Google Scholar 

  • Garbis SD et al (1998) Detection of thiazide-based diuretics in equine urine by liquid chromatography/mass spectrometry. J AOAC Int 81:948–957

    Google Scholar 

  • Geyer H et al (1993) Probenecid as masking agent in doping – inhibition of the urinary excretion of steroid glucuronides. In: Proceedings 10th cologne workshop on dope analysis. Sport und Buch Strauss, Editio Sport, Köln, pp 141–150

    Google Scholar 

  • Geyer H et al (1999) Finasteride – a substance for manipulation in dope control? In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (7). Sport & Buch StrauB, Köln, pp 71–80

    Google Scholar 

  • Geyer H et al (2004) Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids – results of an international study. Int J Sports Med 25:124–129

    Google Scholar 

  • Gilfrich HJ et al (1983) Pharmacokinetics of triamterene after i.v. administration to man: determination of bioavailability. Eur J Clin Pharmacol 25:237–241

    Google Scholar 

  • Goebel C et al (2004) Rapid screening method for diuretics in doping control using automated solid phase extraction and liquid-chromatography–electrospray tandem mass spectrometry. Anal Chim Acta 502:65–74

    Google Scholar 

  • Gonzalo-Lumbreras R et al (2003) Development and method validation for testosterone and epitestosterone in human urine samples by liquid chromatography applications. J Chromatogr Sci 41:261–265

    Google Scholar 

  • Guddat S et al (2004) Detection and quantification of the plasma volume expander dextran in human urine. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (14). SportVerlag Strauss, Köln, pp 197–202

    Google Scholar 

  • Guddat S et al (2005) Identification and quantification of the plasma volume expander dextran in human urine by liquid chromatography-tandem mass spectrometry of enzymatically derived isomaltose. Biomed Chromatogr 19:743–750

    Google Scholar 

  • Gundert-Remy U et al (1979) Plasma and urinary levels of triamterene and certain metabolites after oral administration to man. Eur J Clin Pharmacol 16:39–44

    Google Scholar 

  • Gutiérrez Gallego R, Segura J (2004) Rapid screening of plasma volume expanders in urine using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:1324–1330

    Google Scholar 

  • Gutierrez Gallego R et al (2005) A microtiter assay to detect the presence of glucose-based plasma volume expanders in urine. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (13). SportVerlag Strauss, Köln, pp 383–386

    Google Scholar 

  • Hagedorn HW, Schulz R (1992) Detection of diuretics in horse urine by GC/MS. J Anal Toxicol 16:194–198

    Google Scholar 

  • Halladay SC et al (1977) Diuretic effect and metabolism of bumetanide in man. Clin Pharmacol Ther 22:179–187

    Google Scholar 

  • Hasegawa J et al (1982) Pharmacokinetics of triamterene and its metabolite in man. J Pharmacokinet Biopharm 10:507–523

    Google Scholar 

  • He C et al (2005) Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J Chromatogr A 1082:143–149

    Google Scholar 

  • Henning UGG et al (1981a) Benzothiadiazine dissociation constants. Part I. Ultraviolet spectrophotometric pKa determinations. Analyst 106:557–564

    Google Scholar 

  • Henning UGG et al (1981b) Benzothiadiazine dissociation constants. Part II. The order of deprotonation. Analyst 106:565–573

    Google Scholar 

  • Hepner W et al (1984) A radioimmunoassay to measure piretanide in human serum and urine. J Immunoassay 5:13–27

    Google Scholar 

  • Holazo AA et al (1984) Pharmacokinetics of bumetanide following intravenous, intramuscular, and oral administrations to normal subjects. J Pharm Sci 73:1108–1113

    Google Scholar 

  • Hudak SJ et al (2006) Role of 5 alpha-reductase inhibitors in the management of prostate cancer. Clin Interv Aging 1:425–431

    Google Scholar 

  • Jackson E (2005) Diuretics. Goodman & Gilman’s The pharmacological basis of therapeutics. McGraw-Hill, Medical Publishing Division, New York, pp 737–769

    Google Scholar 

  • Jimenez C et al (2004) Reference materials for analytical toxicology including doping control: freeze-dried urine samples. Analyst 129:449–455

    Google Scholar 

  • Jimenez C et al (2006) Stability studies of testosterone and epitestosterone glucuronides in urine. Rapid Commun Mass Spectrom 20:858–864

    Google Scholar 

  • Jungheinrich C, Neff TA (2005) Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet 44:681–699

    Google Scholar 

  • Jungheinrich C et al (2002) The pharmacokinetics and tolerability of an intravenous infusion of the new hydroxyethyl starch 130/0.4 (6%, 500 mL) in mild-to-severe renal impairment. Anesth Analg 95:544–551; table

    Google Scholar 

  • Karila T et al (1996) High doses of alcohol increase urinary testosterone-to-epitestosterone ratio in females. J Chromatogr B Biomed Appl 687:109–116

    Google Scholar 

  • Karim A et al (1976a) Spironolactone. I. Disposition and metabolism. Clin Pharmacol Ther 19:158–169

    Google Scholar 

  • Karim A et al (1976b) Spironolactone. II. Bioavailability. Clin Pharmacol Ther 19:170–176

    Google Scholar 

  • Kicman AT et al (1995) Proposed confirmatory procedure for detecting 5 alpha-dihydrotestosterone doping in male athletes. Clin Chem 41:1617–1627

    Google Scholar 

  • Kicman AT et al (1999) Adrenal and gonadal contributions to urinary excretion and plasma concentration of epitestosterone in men–effect of adrenal stimulation and implications for detection of testosterone abuse. Clin Endocrinol (Oxf) 50:661–668

    Google Scholar 

  • Kolmonen M et al (2007) A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry. Anal Chim Acta 585:94–102

    Google Scholar 

  • Kuuranne T (2009) Phase-II-metabolism of androgens and its relevancy for doping control analysis. Handbook of Experimental Pharmacology (in press)

    Google Scholar 

  • Lant A (1985a) Diuretics. Clinical pharmacology and therapeutic use (Part I). Drugs 29:57–87

    Google Scholar 

  • Lant A (1985b) Diuretics. Clinical pharmacology and therapeutic use (Part II). Drugs 29:162–188

    Google Scholar 

  • Lisi AM et al (1991) Screening for diuretics in human urine by gas chromatography–mass spectrometry with derivatisation by direct extractive alkylation. J Chromatogr 563:257–270

    Google Scholar 

  • Lisi AM et al (1992) Diuretic screening in human urine by gas chromatography–mass spectrometry: use of a macroreticular acrylic copolymer for the efficient removal of the coextracted phase-transfer reagent after derivatization by direct extractive alkylation. J Chromatogr 581:57–63

    Google Scholar 

  • Lu M et al (2007) A new method for screening and determination of diuretics by on-line CE-ESI-MS. Electrophoresis 28:1461–1471

    Google Scholar 

  • Maren TH (1956) Carbonic anhydrase inhibition.V.N5-substituted 2-acetylamino-1,3,4-thiadiazole-5-sulfonamides: metabolic conversion and use as control substances. J Pharmacol Exp Ther 117:385–401

    Google Scholar 

  • Marques MAS et al (1999) Effect of finasteride on urinary steroid profile: a case study. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (7). Sport and Buch Strauss, Köln, pp 317–322

    Google Scholar 

  • Mazzarino M and Botre F (2008) Fast screening for the detection of HES and dextran. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (16). Sport und Buch Strauss, K­ln, pp 329–332

    Google Scholar 

  • Mehvar R (2000) Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J Control Release 69:1–25

    Google Scholar 

  • Melethil S, Conway WD (1976) Urinary excretion of probenecid and its metabolites in humans as a function of dose. J Pharm Sci 65:861–865

    Google Scholar 

  • Mishler JM et al (1981) Urinary excretion kinetics of hydroxyethyl starch 350/0.60 in normovolaemic man. J Clin Pathol 34:361–365

    Google Scholar 

  • Moffat AC et al (2004) Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material, 3rd edn. Pharmaceutical Press, Paris

    Google Scholar 

  • Morra V et al (2006) Fast gas chromatographic/mass spectrometric determination of diuretics and masking agents in human urine: Development and validation of a productive screening protocol for antidoping analysis. J Chromatogr A 1135:219–229

    Google Scholar 

  • Orita Y et al (1976) A metal complexing property of furosemide and bumetanide: determination of pK and stability constant. Arzneimittelforschung 26:11–13

    Google Scholar 

  • Park SJ et al (1990) Systematic analysis of diuretic doping agents by HPLC screening and GC/MS confirmation. J Anal Toxicol 14:84–90

    Google Scholar 

  • Patel RB et al (1984) Bioavailability of hydrochlorothiazide from tablets and suspensions. J Pharm Sci 73:359–361

    Google Scholar 

  • Politi L et al (2007) A direct screening procedure for diuretics in human urine by liquid chromatography-tandem mass spectrometry with information dependent acquisition. Clin Chim Acta 386:46–52

    Google Scholar 

  • Pozo OJ et al (2008) Direct quantification of steroid glucuronides in human urine by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1183:108–118

    Google Scholar 

  • Ramakrishna NV et al (2004) Selective and rapid liquid chromatography-tandem mass spectrometry assay of dutasteride in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 809:117–124

    Google Scholar 

  • Raynaud E et al (1993) Study of urinary excretion of testosterone and epitestosterone glucuronides in children and adolescents. Pathol Biol (Paris) 41:159–163

    Google Scholar 

  • Riess W et al (1977) Pharmacokinetic studies with chlorthalidone (Hygroton) in man. Eur J Clin Pharmacol 12:375–382

    Google Scholar 

  • Roberts JS, Bratton SL (1998) Colloid volume expanders. Problems, pitfalls and possibilities. Drugs 55:621–630

    Google Scholar 

  • Sabanathan K et al (1987) A comparative study of the pharmacokinetics and pharmacodynamics of atenolol, hydrochlorothiazide and amiloride in normal young and elderly subjects and elderly hypertensive patients. Eur J Clin Pharmacol 32:53–60

    Google Scholar 

  • Salado S, Vera-Avila LE (1997) On-line solid-phase extraction and high-performance liquid chromatographic determination of chlorthalidone in urine. J Chromatogr B Biomed Sci Appl 690:195–202

    Google Scholar 

  • Sander O et al (2003) Equivalence of hydroxyethyl starch HES 130/0. 4 and HES 200/0. 5 for perioperative volume replacement in major gynaecological surgery. Acta Anaesthesiol Scand 47:1151–1158

    Google Scholar 

  • Sanz-Nebot V et al (2001) Determination and characterization of diuretics in human urine by liquid chromatography coupled to pneumatically assisted electrospray ionization mass spectrometry. J Mass Spectrom 36:652–657

    Google Scholar 

  • Saudan C et al (2006) Short-term stability of testosterone and epitestosterone conjugates in urine samples: quantification by liquid chromatography-linear ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 844:168–174

    Google Scholar 

  • Saudan C et al (2008) Short term impact of Tribulus terrestris intake on doping control analysis of endogenous steroids. Forensic Sci Int 178(1):e7–e10

    Google Scholar 

  • Schulze JJ et al (2008) Doping test results dependent on genotype of UGT2B17, the major enzyme for testosterone glucuronidation. J Clin Endocrinol Metab 93(7):2500–2506

    Google Scholar 

  • Simoes S et al (2005) 5-Alpha reductase inhibitors detection in doping analyses. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent andvances in doping analysis (16). Sport und Buch Straub, Köln

    Google Scholar 

  • Simoni RE et al (2008) Screening for HES in human urine and possible application for dextran. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (16). Sport und Buch Straub, Köln

    Google Scholar 

  • Slater GJ et al (2000) Beta-hydroxy beta-methylbutyrate (HMB) supplementation does not influence the urinary testosterone: epitestosterone ratio in healthy males. J Sci Med Sport 3:79–83

    Google Scholar 

  • Smith DE et al (1980) Absorption and disposition of furosemide in healthy volunteers, measured with a metabolite-specific assay. Drug Metab Dispos 8:337–342

    Google Scholar 

  • Son J et al (2006) Screening and confirmation analyses of urinary plasma volume expanders, deextran and HES, in doping control. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (14). SportVerlag Strauss, Köln, pp 423–426

    Google Scholar 

  • Sook YM et al (2006) Rapid screening of plasma volume expanders using Benedict’s solution. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (14). SportVerlag Strauss, Köln, pp 427–430

    Google Scholar 

  • Sorgel F et al (1985) Oral triamterene disposition. Clin Pharmacol Ther 38:306–312

    Google Scholar 

  • Sottas PE et al (2008) From population- to subject-based limits of T/E ratio to detect testosterone abuse in elite sports. Forensic Sci Int 174:166–172

    Google Scholar 

  • Sottas P-E, Robinson N, Saugy M (2009) The athlete’s biological passport and indirect markers of blood doping. Handbook of Experimental Pharmacology (in press)

    Google Scholar 

  • Southan GJ et al (1992) Possible indices for the detection of the administration of dihydrotestosterone to athletes. J Steroid Biochem Mol Biol 42:87–94

    Google Scholar 

  • Starka L (2003) Epitestosterone. J Steroid Biochem Mol Biol 87:27–34

    Google Scholar 

  • Stopforth A et al (2007) Quantification of testosterone and epitestosterone in human urine samples by stir bar sorptive extraction – thermal desorption – gas chromatography/mass spectrometry: application to HIV-positive urine samples. J Sep Sci 30:257–265

    Google Scholar 

  • Thevis M et al (2000a) Detection of the plasma volume expander hydroxyethyl starch in human urine. J Chromatogr B Biomed Sci Appl 744:345–350

    Google Scholar 

  • Thevis M et al (2000b) Mass spectrometry of partially methylated alditol acetates derived from hydroxyethyl starch. J Mass Spectrom 35:77–84

    Google Scholar 

  • Thevis M et al (2002) Mass spectrometric behavior of thiazide-based diuretics after electrospray ionization and collision-induced dissociation. Anal Chem 74:3802–3808

    Google Scholar 

  • Thevis M et al (2007a) Doping-control analysis of the 5alpha-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. Ther Drug Monit 29:236–247

    Google Scholar 

  • Thevis M et al (2007b) Detection of manipulation in doping control urine sample collection: a multidisciplinary approach to determine identical urine samples. Anal Bioanal Chem 388:1539–1543

    Google Scholar 

  • Thieme D et al (2001) Screening, confirmation and quantification of diuretics in urine for doping control analysis by high-performance liquid chromatography-atmospheric pressure ionisation tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 757:49–57

    Google Scholar 

  • Thörngren J et al (2007) A new approach for screening, verifying and confirmation of prohibited doping substances. In: Schaenzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis. Sportverlag Strauss, Köln, pp 245–252

    Google Scholar 

  • Tindall DJ, Rittmaster RS (2008) The rationale for inhibiting 5alpha-reductase isoenzymes in the prevention and treatment of prostate cancer. J Urol 179:1235–1242

    Google Scholar 

  • Tiwari A (2007) Advances in the development of hormonal modulators for the treatment of benign prostatic hyperplasia. Expert Opin Invest Drugs 16:1425–1439

    Google Scholar 

  • Tsai FY et al (1991) Analysis of diuretic doping agents by HPLC screening and GC–MSD confirmation. J Pharm Biomed Anal 9:1069–1076

    Google Scholar 

  • Ventura R (1994) Development of analytical methods to detect the administration of forbidden substances in sport: diuretics, probenecid and mesocarb. PhD Thesis

    Google Scholar 

  • Ventura R, Segura J (1996) Detection of diuretic agents in doping control. J Chromatogr B Biomed Appl 687:127–144

    Google Scholar 

  • Ventura R et al (1991) Approach to the analysis of diuretics and masking agents by high-performance liquid chromatography–mass spectrometry in doping control. J Chromatogr 562:723–736

    Google Scholar 

  • Ventura R et al (1993) Fast screening method for diuretics, probenecid and other compounds of doping interest. J Chromatogr A 655:233–242

    Google Scholar 

  • Ventura R et al (2008) High-throughput and sensitive screening by ultra-performance liquid chromatography tandem mass spectrometry of diuretics and other doping agents. Eur J Mass Spectrom 14:191–200

    Google Scholar 

  • Vercueil A et al (2005) Physiology, pharmacology, and rationale for colloid administration for the maintenance of effective hemodynamic stability in critically ill patients. Transfus Med Rev 19:93–109

    Google Scholar 

  • Waitzinger J et al (2003) Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D 4:149–157

    Google Scholar 

  • Welling PG (1986) Pharmacokinetics of the thiazide diuretics. Biopharm Drug Dispos 7:501–535

    Google Scholar 

  • Williams RL et al (1987) Effects of formulation and food on the absorption of hydrochlorothiazide and triamterene or amiloride from combination diuretic products. Pharm Res 4:348–352

    Google Scholar 

  • Wilson H, Lipsett MB (1966) Metabolism of epitestosterone in man. J Clin Endocrinol Metab 26:902–914

    Google Scholar 

  • World Anti-Doping Agency (WADA) (2007) The 2008 prohibited list

    Google Scholar 

  • Hansch C and Leo (2008) A partition coefficient data bank, MEDCHEM Project. Pomonba College, Claremont, CA

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to financing received from the Spanish (Ministerio de Educación y Ciencia; Consejo Superior de Deportes) and Catalan (Departament d’Universitats, Recerca i Societat de l’Informació; Consell Catalá de l’Esport) authorities for supporting the preparation of the present review. The scientific contribution from other staff members of the Research Group of Bioanalysis and Analytical Services at IMIM-Hospital del Mar is also deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ventura, R., Segura, J. (2010). Masking and Manipulation. In: Thieme, D., Hemmersbach, P. (eds) Doping in Sports: Biochemical Principles, Effects and Analysis. Handbook of Experimental Pharmacology, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79088-4_15

Download citation

Publish with us

Policies and ethics