Skip to main content

Correlation Analysis with Continuous Time Models

  • Chapter
  • First Online:
Identification of Dynamic Systems

Abstract

The correlation methods for single periodic test signals, which have been described in Chap. 5 provide only one discrete point of the frequency response at each measurement with one measurement frequency. At the start of each experiment, one must wait for the decay of the transients. Due to these circumstances, the methods are not suitable for online identification in real time. Thus, it is interesting to employ test signals which have a broad frequency spectrum and thus excite more frequencies at once as did the non-periodic deterministic test signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendat JS, Piersol AG (2010) Random data: Analysis and measurement procedures, 4th edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Chow P, Davies AC (1964) The synthesis of cyclic code generators. Electron Eng 36:253–259

    Google Scholar 

  • Cummins JC (1964) A note on errors and signal to noise ratio of binary crosscorrelation measurements of system impulse response. Atom Energy Establishment, Winfrith (AEEW), Dorset

    Google Scholar 

  • Davies WDT (1970) System identification for self-adaptive control. Wiley-Interscience, London

    MATH  Google Scholar 

  • Doyle FJ, Pearson RK, Ogunnaike BA (2002) Identification and control using Volterra models. Communications and Control Engineering, Springer, London

    Google Scholar 

  • Eykhoff P (1964) Process parameter estimation. Progress in Control Engineering 2:162–206

    Google Scholar 

  • Godman TP, Reswick JB (1956) Determination of th system characteristics from normal operation modes. Trans ASME 78:259–271

    Google Scholar 

  • Hänsler E (2001) Statistische Signale: Grundlagen und Anwendungen. Springer, Berlin

    MATH  Google Scholar 

  • Hughes M, Norton A (1962) The measurement of control system characteristics by means of cross-correlator. Proc IEE Part B 109(43):77–83

    Article  Google Scholar 

  • Ljung L (1999) System identification: Theory for the user, 2nd edn. Prentice Hall Information and System Sciences Series, Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  • Papoulis A (1962) The Fourier integral and its applications. McGraw Hill, New York

    MATH  Google Scholar 

  • Pearson RK (1999) Discrete-time dynamic models. Topics in chemical engineering, Oxford University Press, New York

    Google Scholar 

  • Pintelon R, Schoukens J (2001) System identification: A frequency domain approach. IEEE Press, Piscataway, NJ

    Book  Google Scholar 

  • Rödder P (1973) Systemidentifikation mit stochastischen Signalen im geschlossenen Regelkreis – Verfahren der Fehlerabschätzung. Dissertation. RWTH Aachen, Aachen

    Google Scholar 

  • Rödder P (1974) Nichtbeachtung der Rückkopplung bei der Systemanalyse mit stochastischen Signalen. Regelungstechnik 22:154–156

    MATH  Google Scholar 

  • Sage AP, Melsa JL (1971) System identification. Academic Press, New York

    MATH  Google Scholar 

  • Solodownikow WW (1964) Einführung in die statistische Dynamik linearer Regelsysteme. Oldenbourg Verlag, München

    Google Scholar 

  • Tulleken HJAF (1990) Generalized binary noise test-signal concept for improved identification-experiment design. Automatica 26(1):37–49

    Article  MATH  MathSciNet  Google Scholar 

  • Zimmerschied R (2002) Entwurf von Anregungssignalen für die Identifikation nichtlinearer dynamischer Prozesse. Diplomarbeit. Institut für Regelungstechnik, TU Darmstadt, Darmstadt

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Isermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Isermann, R., Münchhof, M. (2011). Correlation Analysis with Continuous Time Models. In: Identification of Dynamic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78879-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78879-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78878-2

  • Online ISBN: 978-3-540-78879-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics