Skip to main content

Model Order Reduction for MEMS: Methodology and Computational Environment for Electro-Thermal Models

  • Chapter
Model Order Reduction: Theory, Research Aspects and Applications

Part of the book series: Mathematics in Industry ((TECMI,volume 13))

We present a methodology and computational environment for applying mathematical model order reduction (MOR) to electro-thermal MEMSI. MOR can successfully create dynamic compact thermal models of MEMS devices. It is currently possible to use software tool “MOR for ANSYS” (pronounced “more for ANSYS”) to automatically create reduced order thermal models directly from ANSYS models with more than 500 000 degrees of freedom. Model order reduction is automatic and based on the implicit Pad approximation of the transfer function via the Arnoldi algorithm. After model reduction, one can visualize simulation results of the reduced model in Mathematica and can call the SLICOT library via the Mathlink interface in order to obtain mathematically optimal reduced models. Reduced models are easily convertible into hardware description language (HDL) form, and can be directly used for system-level simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Sabry, 11Dynamic Compact Thermal Models Used for Electronic design: A Review of Recent Progress”, Proc. IPACK, pp. 1-17, (2003).

    Google Scholar 

  2. S. D. Senturia, “Microsystem Design”, Kluwer Academic Publishers, (2001).

    Google Scholar 

  3. A. C. Antoulas, “Approximation of Large-Scale Dynamical Systems”, Society for Industrial and Applied Mathematic, (2005).

    Google Scholar 

  4. B. N. Datta, “Numerical Methods for Linear Control systems”, Elsevier Incorporation, (2004).

    Google Scholar 

  5. G. Obinata, B. D. O. Anderson, “Model Reduction for Control System Design”, Springer, (2004).

    Google Scholar 

  6. Z. Q. Qu, “Model Order Reduction Techniques with applications in finite element analysis”, Springer, (2005).

    Google Scholar 

  7. A. Varga, “Model reduction software in the SLICOT library”, In: Applied and Computational Control, Signals and Circuits, Ed. B. Datta, KluwerAcademic Publishers, (2001).

    Google Scholar 

  8. C. Rossi, “Micropropulsion for Space”, Sensors Update, vol. 10, pp. 257-292, (2002).

    Article  Google Scholar 

  9. D. Hohlfeld, “Silicon based tunable optical filters”, PhD Thesis, University of Freiburg, (2005).

    Google Scholar 

  10. J. Wllenstein, H. Bttner, J. A. Plaza, C. Cane, Y. Min, H. L. Tuller, “A novel single chip thin film metal oxide array”, Sensors and Actuators B: Chemical, 93(1-3), pp. 350-355, (2003).

    Article  Google Scholar 

  11. R. W. Freund, “Krylov-subspace methods for reduced-order modeling in circuit simulation”, Journal of Computational and Applied Mathematics, Vol. 123, pp. 395-421, (2000).

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Bechtold, “Model Order Reduction of Electro-Thermal MEMS”, PhD thesis, University of Freiburg, (2005).

    Google Scholar 

  13. Y. J. Yang, C. Yu, “Extraction of heat-transfer macromodels for MEMS device”, Journal of Micromechanics and Microengineering, vol. 14, pp. 587-596, (2004).

    Article  Google Scholar 

  14. L. Codecasa, D. D.Amore, P. Maffezzoni, “An Arnoldi Based Thermal Network Reduction Method for Electro-Thermal analysis”, IEEE Transactions on Components and Packaging Technologies, 26(1), pp. 186 -192, (2003).

    Article  Google Scholar 

  15. J. G. Korvink, E. B. Rudnyi, “Oberwolfach Benchmark Collection”, In: Benner, P., Mehrmann, V., Sorensen, D. (eds) Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering (LNCSE). Springer-Verlag, Berlin/Heidelberg, Germany, v. 45, p. 311-315, (2005).

    Chapter  Google Scholar 

  16. E. B. Rudnyi and J. G. Korvink, “Model Order Reduction for Large Scale Engineering Models Developed in ANSYS”, Lecture Notes in Computer Science, v. 3732, pp. 349-356, (2005).

    Google Scholar 

  17. P. Heres, “Robust and Efficient Krylov Subspace Methods for Model order Reduction”, PhD thesis, Technical University of Eindhoven, (2005).

    Google Scholar 

  18. D. Petit, R. Hachette, “Model Reduction in Linear Heat Conduction: Use of Interface Fluxes for the Numerical Coupling”, International Journal of Heat and Mass Transfer, vol. 41, pp. 3177-3189, (1998).

    Article  MATH  Google Scholar 

  19. X. Guo, D. Celo, D. J. Walkey, T. Smy, “The Use of Constant Heat FlowPorts for Thermal Macro-Models”, Proc. THERMICNIC, pp. 323-328, (2004).

    Google Scholar 

  20. R. W. Freund, “SPRIM: Structure-preserving reduced-order interconnect macro-modeling”, IEEE/ACM ICCAD, (2004).

    Google Scholar 

  21. H. Yu, L. He and S.X.D. Tan, “Block Structure Preserving Model Order Reduction”, IEEE Behavioral Modeling and Simulation Wokshop pp. 1-6, (2005).

    Google Scholar 

  22. A. Vanderdorpe, P. Van Dooren, “Model Rdeuction of Interconnected Systems”, submitted to Automatica, 2005

    Google Scholar 

  23. R. C. li, Z. Bai, “Structure-Preserving Model Reduction Using a Krylov Subspace Projection Formulation”, Comm. Math. Sci., vol. 3(2), pp. 179-199, (2005).

    Google Scholar 

  24. V. Szkely, M. Renz, “Thermal dynamics and the time constant domain”, IEEE Trans. on Comp. Pack. Techn., 23(3), pp. 587-594, (2000).

    Article  Google Scholar 

  25. J. S. Han, E. B. Rudnyi, J. G. Korvink, “Efficient optimization of transient dynamic problems in MEMS devices using model order reduction”, J. Micromech. Microeng., 15(4), pp. 822-832, (2005).

    Article  Google Scholar 

  26. DOT Users Manual version 4.20 (Colorado Springs, CO: Vanderplaats Research and Development), at http://www.vrand.com/DOT.html

  27. T. Bechtold, “Dynamic electro-thermal simulation of microsystems - a review”, J. Micromech. Microeng., vol. 15, R17-R31, (2005).

    Article  Google Scholar 

  28. D. S. Weile and E. Michielssen, “Analysis of frequency selective surfaces using two-parameter generalized rational Krylov model-order reduction”, IEEE Transactions on Antennas and Propagation, vol. 49, pp. 1539-1549, (2001).

    Article  MATH  Google Scholar 

  29. L. H. Feng, E. B. Rudnyi, J. G. Korvink, “Preserving the film coefficient as a parameter in the compact thermal model for fast electro-thermal simulation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 24, N 12, pp. 1838-1847, (2005).

    Article  Google Scholar 

  30. L. Codecasa, D. D’Amore, and P. Maffezzoni, “A novel approach for generating boundary condition independent compact dynamic thermal networks of packages”, Proc. 10th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), pp. 305-310, (2004).

    Google Scholar 

  31. L. H. Feng, “Parameter independent model order reduction”, Mathematics and Computers in Simulation, v. 68, N 3, pp. 221-234, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. O. Farle, V. Hill, P. Ingelstrm, R. Dyczij-Edlinger, “Multi-parameter Polynomial Model Reduction Of Linear Finite Element Equation Systems”, Proc. 5th MATHMOD, (2006).

    Google Scholar 

  33. D. Celo, P. K. Gunupudi, R. Khazaka, D. J. Walkey, T. Smy, M. S. Nakhla, “Fast Simulation of Steady-State Temperature Distributions in Electronic Components Using Multidimensional Model Reduction”, IEEE Transactions on Components and Packaging Technologies, vol. 28(1), pp. 70-79, (2005).

    Article  Google Scholar 

  34. E. B. Rudnyi, L. H. Feng, M. Salleras, S. Marco, J. G. Korvink, “Error Indicator to Automatically Generate Dynamic Compact Parametric Thermal Models”, Proc. THERMINIC, (2005).

    Google Scholar 

  35. L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, and J. White, “A Multiparameter Moment-Matching Model-Reduction Approach for Generating Geometrically Parameterized Interconnect Performance Models”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, pp. 678-693, (2004).

    Article  Google Scholar 

  36. P. K. Gunupudi, R. Khazaka, and M. Nakhla, “Analysis of transmissionline circuits using multidimensional model reduction techniques,” IEEE Transactions on Advanced Packaging, vol. 25, pp. 174-180, (2002).

    Article  Google Scholar 

  37. P. Holmes, J. L. Lumley, and G. Berkooz, “Turbulence, coherent structures, dynamical systems, and symmetry”, Cambridge University Press, (1996).

    Google Scholar 

  38. D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: new approaches for computational physics”, Progress in Aerospace Sciences, vol. 40, pp. 51-117, (2004).

    Article  Google Scholar 

  39. M. E. Kowalski and H. M. Jin, “Model-order reduction of nonlinear models of electromagnetic phased-array hyperthermia,” IEEE Transactions on Biomedical Engineering, vol. 50, pp. 1243-1254, (2003).

    Article  Google Scholar 

  40. P. Astrid, A. Verhoeven, “Application of Least Squares MPE technique in the reduced order modeling of electrical circuits”, Proc. MTNS, (2006).

    Google Scholar 

  41. L. H. Feng, .Review of model order reduction methods for numerical simulation of nonlinear circuits”, Applied Mathematics and Computation, vol. 167, N 1, pp. 576-591, (2005).

    Google Scholar 

  42. J. R. Phillips, “Projection-based approaches for model reduction of weakly nonlinear, time-varying systems”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22, pp. 171-187, (2003).

    Article  Google Scholar 

  43. L. H. Feng, E. B. Rudnyi, J. G. Korvink, C. Bohm, T. Hauck, “Compact Electro-thermal Model of Semiconductor Device with Nonlinear Convection Coefficient”, Proc. EuroSimE, pp. 372-375, (2005).

    Google Scholar 

  44. M. Rewienski, J. White, “A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, pp. 155-170, (2003).

    Article  Google Scholar 

  45. D. Vasilyev, M. Rewienski, and J. White, “Macromodel generation for bio MEMS components using a stabilized balanced truncation plus trajectory piecewise-linear approach”, IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, vol. 25, pp. 285-293, 2006.

    Article  Google Scholar 

  46. Y.-J. Yang, K.-Y. Shen, .Nonlinear heat-transfer macromodeling for MEMS thermal devices”, “Journal of Micromechanics and Microengineering”, vol. 15, pp. 408-418, (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bechtold, T., Rudnyi, E.B., Korvink, J.G. (2008). Model Order Reduction for MEMS: Methodology and Computational Environment for Electro-Thermal Models. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78841-6_18

Download citation

Publish with us

Policies and ethics