Skip to main content

Quadratic Inverse Eigenvalue Problem and Its Applications to Model Updating — An Overview

  • Chapter
Model Order Reduction: Theory, Research Aspects and Applications

Part of the book series: Mathematics in Industry ((TECMI,volume 13))

Modeling is one of the most fundamental tools that we use to simulate the complex world. The goal of modeling is to come up with a representation that is simple enough for mathematical manipulation yet powerful enough for describing, inducing, and reasoning complicated phenomena. When modeling physical systems, the resulting mathematical models are sometimes of a very high order too expensive for simulation. One remedy is the notion of model reduction that assists in approximating very high order mathematical models with lower order models. As is evidenced in this collection, model reduction has been under extensive study and rapid development over the past few years with many physical and engineering applications. On the other hand, precise mathematical models of physical systems are hardly available in practice. Many factors, including inevitable disturbances to the measurement and imperfect characterization of the model, attribute to the inexactitude. Since the model reduction process begets only a partial effect of the original model, it is reasonable to expect that the reduced model might not be consonant with realistic data either. For various reasons, it often becomes necessary to update a primitive model to attain consistency with empirical results. This procedure of updating or revising an existing model is another essential ingredient for establishing an effective model. The emphasis of the following discussion is on the model updating of quadratic pencils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using vibration data, AIAA Journal, 16(1978) 1208–1210.

    Article  MATH  Google Scholar 

  2. A. Berman and E. J. Nagy, Improvement of a large analytical model using test data, AIAA Journal, 21(1983) 1168–1173.

    Article  Google Scholar 

  3. J. Carvalho, State Estimation and Finite-Element Model Updating for Vibrating Systems, Ph.D. Dissertation, Northern Illinois University, 2002.

    Google Scholar 

  4. M. T. Chu, N. Del Buono and B. Yu, Structured quadratic inverse eigenvalue problems, I. Serially linked systems, SIAM J. Sci. Comput., 29(2007), 2668–2685.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. T. Chu and G. H. Golub, Structured inverse eigenvalue problems, Acta Numerica, 11(2002), 1–71.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. T. Chu, Y.-C. Kuo and W.-W. Lin, On inverse quadratic eigenvalue problems with partially prescribed eigenstructure, SIAM J. Matrix Anal. Appl., 25(2004), 995–1020.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. T. Chu and G. H. Golub, Inverse Eigenvalue Problesm: Theory, Algorithms, and Applications, Oxford University Press, 2005.

    Google Scholar 

  8. M. T. Chu, B. N. Datta, W.-W. Lin and S.-F. Xu, The spill-over phenomenon in quadratic model updating, AIAA. J., to appear, 2008.

    Google Scholar 

  9. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New York, 1956.

    Google Scholar 

  10. B. N. Datta, S. Elhay, Y. M. Ram, and D. R. Sarkissian, Partial eigenstructure assignment for the quadratic pencil, Journal of Sound and Vibration, 230(2000), 101–110.

    Article  MathSciNet  Google Scholar 

  11. B. N. Datta and D. R. Sarkissian, Theory and computations of some inverse eigenvalue problems for the quadratic pencil, in Contemporary Mathematics, Volume on “Structured Matrices in Operator Theory, Control, and Signal and Image Processing”, 2001, 221–240.

    Google Scholar 

  12. B. N. Datta, Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems, mechanical systems and signal processing, Special Volume on “Vibration Control”, 16(2002), 83–96.

    Google Scholar 

  13. D. J. Ewins, Adjustment or updating of models, S\(\overline{\mbox{a}}\)dhan\(\overline{\mbox{a}}\), 25(2000), 235–245.

    Google Scholar 

  14. M. I. Friswell and J. E. Mottershed, Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, Boston, 1995.

    MATH  Google Scholar 

  15. M. I. Friswell, D. J. Inman, and D. F. Pilkey, The direct updating of damping and stiffness matrices, AIAA Journal, 36(1998), 491–493.

    Article  Google Scholar 

  16. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London, UK, 1981.

    MATH  Google Scholar 

  17. G. M. L. Gladwell, Inverse Problems in Vibration, Martinus Nijhoff, Dordrecht, Netherlands, 1986, 2nd ed., 2004.

    Google Scholar 

  18. Y.-C. Chen, W.-W Lin and S.-F. Xu, Solution of the partially described inverse quadratic eigenvalue problem, SIAM J. Matrix Analysis Appl., 29(2006), 33–53.

    Google Scholar 

  19. Y.-C. Kuo, W.-W Lin and S.-F. Xu, A new model updating methods for quadratic eigenvalue problems, preprint, National Tsinghua University, Taiwan, 2005.

    Google Scholar 

  20. P. Lancaster and U. Prells, Inverse problems for damped vibration systems, J. Sound Vibration, 283(2005), 891–914.

    Article  MathSciNet  Google Scholar 

  21. N. K. Nichols and J. Kautsky, Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case, SIAM J. Matri Anal. Appl., 23(2001), 77–102.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. M. Ram and S. Elhay An inverse eigenvalue problem for the symmetric tridiagonal quadratic pencil with application to damped oscillatory systems, SIAM J. Appl. Math., 56(1996), 232–244.

    Article  MATH  MathSciNet  Google Scholar 

  23. W. H. A. Schilders and H. A. van der Vorst , Model order reduction, coupled problems and optimzation, http://www.lorentzcenter.nl/lc/web/2005/160/info.php3?wsid=160.

  24. L. Starek and D. J. Inman, Symmetric inverse eigenvalue vibration problem and its applications, Mechanial Systems and Signal Process, 15(2001), 11–29.

    Article  Google Scholar 

  25. F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43(2001), 235–286.

    Article  MATH  MathSciNet  Google Scholar 

  26. F.-S. Wei, Mass and stiffness interaction effects in analytical model modification, AIAA Journal, 28(1990) 1686–1688.

    Article  Google Scholar 

  27. H.-M. Zhu, Courant’s Nodal Line Theorem and Its Discrete Counterparts, Ph. D. Dissertation, University of Waterloo, Waterloo, ONtario, Canada, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chu, M.T. (2008). Quadratic Inverse Eigenvalue Problem and Its Applications to Model Updating — An Overview. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78841-6_15

Download citation

Publish with us

Policies and ethics