Skip to main content

Three-Wave Dissipative Brillouin Solitons

  • Chapter
  • First Online:
Dissipative Solitons: From Optics to Biology and Medicine

Part of the book series: Lecture Notes in Physics ((LNP,volume 751))

Abstract

Stimulated Brillouin backscattering of an electromagnetic c.w. pump wave into a red-shifted Stokes wave through a dissipative material acoustic wave, as governed by the nonlinear space–time three-wave resonant model, gives rise to backward-traveling solitary pulses, which are experimentally obtained in long fiber-ring cavities. Stability analysis of the inhomogeneous stationary Brillouin mirror solution in a c.w.-pumped cavity exhibits a one-parameter Hopf bifurcation. Below a critical feedback, a time-dependent oscillatory regime occurs, and we get self-organization of a localized pulsed regime. Experimental results and a dynamical simulation confirm this scenario. A stable continuous family of super-luminous and sub-luminous backward-traveling dissipative solitary pulses is obtained through a single control parameter. A parallel analysis in an unbounded one-dimensional medium shows that the integrable three-wave super-luminous symmetrical soliton is unstable for small dissipation, and that it cascades to a turbulent multi-peak structure. The general non-symmetrical and non-integrable case is dependent only on the exponential slope of the wave front of the backscattered Stokes wave, thus providing the stable super- and sub-luminous dissipative solitary attractors. An overview of the experimental results for a large set of input pump powers and Stokes feedback conditions shows a remarkable agreement with the numerical simulations of the three-wave coherent partial differential equations model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Pohl and W. Kaiser, Phys. Rev. B 1, 31 (1970).

    Article  ADS  Google Scholar 

  2. V.A. Gorbunov, S.B. Papernyi, and V.R. Startsev, Sov. J. Quantum Electron 13, 900 (1983).

    Article  ADS  Google Scholar 

  3. B. Gellert and B. Kronast, Appl. Phys. B 32, 175 (1983); Appl. Phys. B 33, 29 (1984).

    Article  ADS  Google Scholar 

  4. J. Botineau, C. Leycuras, C. Montes, and E. Picholle, J. Opt. Soc. Am. B 6, 300 (1989).

    ADS  Google Scholar 

  5. E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, Phys. Rev. Lett. 66, 1454 (1991).

    Article  ADS  Google Scholar 

  6. C. Montes, A. Mamhoud, and E. Picholle, Phys. Rev. A 49, 1344 (1994).

    Article  ADS  Google Scholar 

  7. C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, J. Opt. Soc. Am. B 16, 932 (1999), and references therein.

    Article  ADS  Google Scholar 

  8. J. Botineau, G. Cheval, and C. Montes. Opt. Commun. 257 319 (2006).

    Article  ADS  Google Scholar 

  9. J. Coste and C. Montes, Phys. Rev. A 34, 3940 (1986).

    Article  ADS  Google Scholar 

  10. W. Lu and R.G. Harrison, Europhys. Lett. 16, 655 (1991); \ W. Lu, A. Johnstone, and R.G. Harrison, Phys. Rev. A 46, 4114 (1992).

    Article  ADS  Google Scholar 

  11. S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, Phys. Rev. A 51, R4345–R4348 (1995).

    Article  ADS  Google Scholar 

  12. I. Bar-Joseph, A.A. Friesem, E. Lichtman, and R.G. Waarts, J. Opt. Soc. Am. B 2, 1606–1611 (1986).

    Article  ADS  Google Scholar 

  13. R.G. Harrison, J.S. Uppal, A. Johnstone, and J.V. Moloney, Phys. Rev. Lett. 65, 167 (1990).

    Article  ADS  Google Scholar 

  14. A.L. Gaeta and R.W. Boyd, Internat. J. Nonlinear Opt. Phys. 1, 581 (1992).

    Article  ADS  Google Scholar 

  15. M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, Phys. Rev. A 48, 3301 (1993).

    Article  ADS  Google Scholar 

  16. E. Picholle and A. Picozzi, Opt. Commun. 135, 327 (1997).

    Article  ADS  Google Scholar 

  17. I. Bongrand, E. Picholle, and C. Montes, Eur. Phys. J. D 20, 121 (2002).

    ADS  Google Scholar 

  18. I. Bongrand, C. Montes, E. Picholle, J. Botineau, A. Picozzi, G. Cheval, and D. Bahloul, Opt. Lett. 19, 1475 (2001).

    Article  ADS  Google Scholar 

  19. J. Botineau, G. Cheval, and C. Montes. Opt. Commun. 257, 311 (2006).

    Article  ADS  Google Scholar 

  20. C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, Phys. Rev. E 55, 1086 (1997) and references therein.

    Article  ADS  Google Scholar 

  21. S.C. Chiu, J. Math. Phys. 19, 168 (1978).

    Article  ADS  Google Scholar 

  22. C. Montes, A. Picozzi, and D. Bahlouol, Phys. Rev. E 55, 1092 (1997).

    Article  ADS  Google Scholar 

  23. V.G. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov, Bull. Moscow State University, Math. and Mechanics 1, 1 (1937).

    Google Scholar 

  24. Super-luminous motion of the three-wave localized structure does not contradict the special theory of relativity in any way. This motion can be viewed as the result of the convective amplification of the leading edges of the Stokes and material pulses, whereas their tails are attenuated, since the pump wave is depleted during the interaction, and then totally or partially restored afterwards. This deformation process can only occur if a sufficiently extended background of Stokes light is available, and no transportation of information can occur because of it.

    Google Scholar 

  25. J.A. Armstrong, S.S. Jha, and N.S. Shiren, IEEE J. Quant. Elect. QE-6, 123 (1970).

    Article  ADS  Google Scholar 

  26. K. Nozaki and T. Taniuti, J. Phys. Soc. Jpn. 34, 796 (1973); Y. Oshawa and K. Nozaki, J. Phys. Soc. Jpn. 36, 591 (1974).

    Article  ADS  Google Scholar 

  27. S.F. Morosov, L.V. Piskunova, M.M. Sushik, and G.I. Freidman, Sov. J. Quant. Electron. 8, 576 (1978).

    Article  ADS  Google Scholar 

  28. E. Gaizauskas and K. Staliunas, Opt. Commun. 114, 463 (1995).

    Article  ADS  Google Scholar 

  29. D.J. Kaup, J. Nonlinear Sci. 3, 427 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. A. Hasegawa, in Optical Solitons in Fibers (Springer-Verlag, Berlin, (1990).

    Google Scholar 

  31. Note that the coherent SBS coupling coefficient, K, in Ref. [7], Eq.(1b), contains two errors.

    Google Scholar 

  32. B. Ya Zel’dovich and A.N. Pilipetskii, Sov. J. Quantum Electron. 183, 818 (1988).

    Article  Google Scholar 

  33. C.K. Jen, J.E.B. Oliveira, N. Goto, and K. Abe, Electron. Lett. 24, 1419 (1988).

    Article  Google Scholar 

  34. J. Botineau, E. Picholle, and D. Bahloul, Electron. Lett. 23, 2032 (1995).

    Article  Google Scholar 

  35. R.W. Boyd and K. Rzazewsky, Phys. Rev. A 42, 5514 (1990).

    Article  ADS  Google Scholar 

  36. J. Botineau, C. Leycuras, C. Montes, and E. Picholle, Opt. Commun. 109, 126 (1994).

    Article  ADS  Google Scholar 

  37. A. Picozzi, C. Montes, J. Botineau, E. Picholle, J. Opt. Soc. Am. B 15, 1309 (1998); \ A. Picozzi, C. Montes, and E. Picholle, Phys. Rev. E 58, 2548 (1998).

    Article  ADS  Google Scholar 

  38. V. Lecoeuche, B. Ségard, and J. Zemmouri, Opt. Commun. 134, 547–558 (1997).

    Article  ADS  Google Scholar 

  39. C. Montes and O. Legrand, in Electromagnetic and Acoustic Scattering: Detection and Inverse Problem, edited by C. Bourrely, P. Chiappetta, and B. Torresani, (World Scientific, Singapore, (1989), pp. 209–221; O. Legrand and C. Montes, J. Phys. Colloq. France 50, C3–147 (1989).

    Google Scholar 

  40. L. Chen and X. Bao, Opt. Commun. 152, 65 (1998).

    Article  ADS  Google Scholar 

  41. D.J. Kaup, A. Reiman, and A. Bers, Rev. Mod. Phys. 51, 275 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  42. Ph.M. Morse and H. Feshbach, in Methods of Theoretical Physics, (Mc Graw-Hill, New York, (1953) p. 437.

    Google Scholar 

  43. A. Hasegawa and Y. Kodama, Opt. Lett. 15, 1443 (1990).

    Article  ADS  Google Scholar 

  44. Note that Eq.(11) in Ref. [2] contains an error. The first line stands for S and the second line is the expression for p_sym.

    Google Scholar 

  45. Note that Eq.(15) in Ref. [7] contains an error; it must be written E B/E p 0 = [1 − (µs µa)½] (2 µas − 1)½. according to Eq.(3) of Ref. [5] or as the corrected expression (11) of Ref.[22] (cf. [44]).

    Google Scholar 

  46. V.I. Kovalev and R.G. Harrison, Phys. Rev. Lett. 85, 1879 (2000); V.I. Kovalev and R.G. Harrison, Opt. Lett. 27, 2022 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Montes .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montes, C. (2008). Three-Wave Dissipative Brillouin Solitons. In: Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol 751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78217-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78217-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78216-2

  • Online ISBN: 978-3-540-78217-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics