Skip to main content

Intelligent Vehicle Handling: Steering and Body Postures While Cornering

  • Conference paper
Architecture of Computing Systems – ARCS 2008 (ARCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4934))

Included in the following conference series:

Abstract

Vehicle handling and control is an essential aspect of intelligent driver assistance systems, a building block of the upcoming generation of ”smart cars”. A car’s handling is affected by (i) technological (engine, suspension, brakes, tires, wheels, steering, etc.), (ii) environmental (road condition, weather, traffic, etc.), and (iii) human (attentiveness, reactiveness, driver agility, etc.) factors, and their mutual interrelationship. In this paper we investigate on how a driver’s endeavor for precise steering interferes with lateral acceleration while cornering. Depending on the steering ratio and the cruising speed, we identify that the readiness of a driver to compensate lateral forces exhibits counterintuitive characteristics. A driver body posture recognition technique based on a high resolution pressure sensor integrated invisibly and unobtrusively into the fabric of the driver seat has been developed. Sensor data, collected by two 32x32 pressure sensor arrays (seat- and backrest), is classified according to features defined based on cornering driving situations. Experimental results verify an increased readiness to compensate lateral acceleration with increasing driving speed, but only beyond a certain driver specific ”break even” point. Above intelligent driver assistance, e.g. to improve steering precision, to reduce or avoid over-steer or under-steer, or to proactively notify electronic stability control (ESC), our results also encourage for new modalities in driver-to-car and car-to-roadside interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, S.Y., Trivedi, M.M.: Turn-intent analysis using body pose for intelligent driver assistance. IEEE Pervasive Computing 5(4), 28–37 (2006)

    Article  Google Scholar 

  2. Graham, R., Carter, C.: Comparison of speech input and manual control of in-car devices while on the move. Personal and Ubiquitous Computing 4(2/3) (2000)

    Google Scholar 

  3. McCallum, M., et al.: Speech recognition and in-vehicle telematics devices: Potential reductions in driver distraction. International Journal of Speech Technology 7(1), 25–33 (2004)

    Article  Google Scholar 

  4. Stallkamp, J., et al.: Video-based driver identification using local appearance face recognition. In: Workshop on DSP in Mobile and Vehicular Systems, Istanbul, Turkey, Interactive Systems Labs, Department of Computer Science, TU Karlsruhe, Germany, p. 4 (June 2007)

    Google Scholar 

  5. McCall, J., Trivedi, M.M.: Driver Monitoring for a Human-Centered Driver Assistance System. In: HCM 2006: Proceedings of the 1st ACM international workshop on Human-centered multimedia, pp. 115–122. ACM Press, New York (2006)

    Chapter  Google Scholar 

  6. Erzin, E., et al.: Multimodal person recognition for human-vehicle interaction. IEEE MultiMedia 13(2), 18–31 (2006)

    Article  Google Scholar 

  7. Oliver, N., Pentland, A.: Graphical models for driver behavior recognition in a smartcar. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 7–12 (October 3–5, 2000)

    Google Scholar 

  8. Oliver, N., Pentland, A.P.: Driver behavior recognition and prediction in a smartcar (2000)

    Google Scholar 

  9. Cheng, S.Y., Park, S., Trivedi, M.M.: Multiperspective thermal ir and video arrays for 3d body tracking and driver activity analysis. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005) - Workshops, p. 3. IEEE Computer Society Press, Washington (2005)

    Chapter  Google Scholar 

  10. Trivedi, M.M., Gandhi, T., McCall, J.: Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety. IEEE Transactions on Intelligent Transportation Systems 8(1), 108–120 (2007)

    Article  Google Scholar 

  11. Veeraraghavan, H., et al.: Driver activity monitoring through supervised and unsupervised learning. In: Intelligent Transportation Systems, 2005. Proceedings, pp. 580–585. IEEE, Los Alamitos (2005)

    Google Scholar 

  12. Trivedi, M.: Occupant posture analysis with stereo and thermal infrared video: Algorithms and experimental evaluation (2003)

    Google Scholar 

  13. Moeslund, T.: Computer vision-based human motion capture – a survey (1999)

    Google Scholar 

  14. Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding: CVIU 81(3), 231–268 (2001)

    Article  MATH  Google Scholar 

  15. McCall, J.C., Trivedi, M.M.: Human Behavior Based Predictive Brake Assistance. In: Intelligent Vehicles Symposium, pp. 8–12. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  16. Park, S., Trivedi, M.: Driver activity analysis for intelligent vehicles: Issues and development framework (2004)

    Google Scholar 

  17. Hermkens, J.: Tools for Professionals: FSA documentation. Vista Medical Europe B.V., Industrieterrein 40, NL-5981 AK Panningen, The Netherlands (August 02, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Uwe Brinkschulte Theo Ungerer Christian Hochberger Rainer G. Spallek

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riener, A., Ferscha, A., Matscheko, M. (2008). Intelligent Vehicle Handling: Steering and Body Postures While Cornering. In: Brinkschulte, U., Ungerer, T., Hochberger, C., Spallek, R.G. (eds) Architecture of Computing Systems – ARCS 2008. ARCS 2008. Lecture Notes in Computer Science, vol 4934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78153-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78153-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78152-3

  • Online ISBN: 978-3-540-78153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics