Skip to main content

Abstract

Everyone interested in neuroanaesthesia talks about intracranial pressure (ICP), but in daily clinical practice nobody measures it during craniotomy. This was the thesis that started this work more than ten years ago. A method for easy monitoring of ICP during surgery, but before opening of dura, was devised and the method was introduced in our daily clinical practice. In this chapter indications for ICP measurement, critical levels of ICP and regional differences in ICP are described. Medical approaches to ICP control are considered, including body position, hyperventilation, hypothermia and administration of barbiturate. The effect of suctioning, positive end-expiratory pressure, sedatives and analgetics are discussed as well as the use of mannitol and hypertonic saline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Madi M, Trop D, Ravussin P (1993) The early role of mannitol-induced haemodynamic changes in the control of intracranial hypertension. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 601–604

    Google Scholar 

  • Abramson NS, Safar P, Detre K et al (1983) Results of a randomized clinical trial of brain resuscitation with thiopental. Anesthesiology 59:A101

    Google Scholar 

  • Albeck MJ, Skak C, Nielsen PR et al (1998) Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg 89:275–278

    PubMed  CAS  Google Scholar 

  • Albrecht RF, Ruttle M (1987) Cerebral effect of extended hyperventilation in anaesthetized goats. Stroke 18:649–655

    PubMed  CAS  Google Scholar 

  • Alexander SC, Smith TC, Strobel G et al (1968) Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis. J Appl Physiol 24:66–72

    PubMed  CAS  Google Scholar 

  • Altura BT, Altura BM (1975) Pentobarbital and contraction of vascular smooth muscle. Am J Physiol 229:1635–1640

    PubMed  CAS  Google Scholar 

  • Andersen AR, Tfeft-Hansen P, Lassen NA (1987) The effect of ergotamine and dihydroergotamine on cerebral blood flow in man. Stroke 18:120–123

    PubMed  CAS  Google Scholar 

  • Andrews PJD, Citerio G (2006) Lund therapy: pathophysiology-based therapy or contrived over-interpretation of limited data? Intensive Care Med 32:1461–1464

    PubMed  Google Scholar 

  • Andrews RJ, Muto RP(1992) Retraction brain ischaemia: mannitol plus nimodipine preserves both cerebral blood flow and evoked potentials during normoventilation and hyperventilation. Neurol Res 14:19–25

    PubMed  CAS  Google Scholar 

  • Andrews PJD, Dearden NM, Miller JD (1993) Comparison of thiopentone and propofol at two rates of intravenous administration in severely head injured patients. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 623–628

    Google Scholar 

  • Artru AA (1987) Reduction of cerebrospinal fluid pressure by hypocapnia: changes in cerebral blood volume, cerebrospinal fluid volume, and brain tissue water and electrolytes. J Cereb Blood Flow Metab 7:471–479

    PubMed  CAS  Google Scholar 

  • Artru AA, Hornbein TF (1987) Prolonged hypocapnia does not alter the rate of CSF production in dogs during halothane anaesthesia or sedation with nitrous oxide. Anesthesiology 67:66–71

    PubMed  CAS  Google Scholar 

  • Artru AA, Nugent M, Michenfelder JD (1981) Anesthetics affect the cerebral metabolic response to circulatory catecholamine. J Neurochem 36:1941–1946

    PubMed  CAS  Google Scholar 

  • Asgeirsson B, Grände PO, Nordström C-H (1994) A new therapy of posttrauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 20:260–267

    PubMed  CAS  Google Scholar 

  • Asgeirsson B, Grände PO, Nordström C-H et al (1995) Cerebral haemodynamic effects of dihydroergotamine in patients with severe traumatic brain lesions. Acta Anesthesiol Scand 39:922–930

    CAS  Google Scholar 

  • Aucoin PJ, Kotilainen HR, Gantz NM et al (1986) Intracranial pressure monitors. Epidemiologic study of risk factors and infections. Am J Med 80:369–376

    PubMed  CAS  Google Scholar 

  • Auer LM, Haselsberger K (1987) Effect of intravenous mannitol on cat pial arteries and veins during normal and elevated intracranial pressure. Neurosurgery 21:142–146

    PubMed  CAS  Google Scholar 

  • Awad I, Little JR, Lucas F et al (1983) Modification of focal cerebral ischemia by prostacyclin and indomethacin. J Neurosurg 58:714–719

    PubMed  CAS  Google Scholar 

  • Battison C, Peter H, Andrews JD et al (2005) Randomized, controlled trial on the effect of 20% mannitol solution and a 7.5% saline/6% dextran solution on increased intracranial pressure after brain injury. Crit Care Med 33:196–202

    PubMed  CAS  Google Scholar 

  • Bereczki D, Liu M, do Prado GF et al (2001) Mannitol for acute stroke. Cochrane Database Syst Rev 1:CD001153

    PubMed  Google Scholar 

  • Berger S, Schürer L, Härtl R et al (1995) Reduction of posttraumatic intracranial hypertension by hypertonic/hyperoncotic saline/dextran and hypertonic mannitol. Neurosurgery 37:98–108

    PubMed  CAS  Google Scholar 

  • Berntman L, Dahlgren N, Siesjö BK (1978) Influence of intravenously administered catecholamine on cerebral oxygen consumption and blood flow in the rat. Acta Physiol Scand 104:101–108

    PubMed  CAS  Google Scholar 

  • Biestro A, Alberti R, Galli R et al (1997) Osmotherapy for increased intracranial pressure: comparison between mannitol and glycerol. Acta Neurochir 139:725–733

    CAS  Google Scholar 

  • Bloomfield GL, Ridings PC, Blockers CR et al (1997) A proposed relationship between increased intraabdominal, intrathoracic, and intracranial pressure. Crit Care Med 25:496–503

    PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizlaar JP, Choi SC et al (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:685–693

    PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP, Stringer WA et al (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77:360–368

    PubMed  CAS  Google Scholar 

  • Bowie RA, O’Conner PJ, Hardman JG et al (2001) The effect of continuous positive airway pressure on cerebral blood flow velocity in awake volunteers. Anesth Analg 92:415–417

    PubMed  CAS  Google Scholar 

  • Bozza MM, Maspes PE, Rossanda M (1961) The control of brain volume and tension during intracranial operations. Br J Anaesth 33:132–147

    Google Scholar 

  • Braakman R, Schouten HJA et al (1983) Megadose steroids in severe head injury. J Neurosurg 58:326–330

    PubMed  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF et al (1985) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63:704–713

    PubMed  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. N Engl J Med 322:1405–1411

    PubMed  CAS  Google Scholar 

  • Brawley BW, Strandness DE, Kelly WA (1967) The physiologic response to therapy in experimental cerebral ischaemia. Arch Neurol 17:180–187

    PubMed  CAS  Google Scholar 

  • Broaddus WC, Pendleton GA, Delashaw SB et al (1989) Differential intracranial pressure recordings in patients with dual ipsilateral monitors. In: Hoff JH, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 41–44

    Google Scholar 

  • Brown SC, Lam AM, Manninen PH (1986) Haemodynamic effects of high-dose mannitol in man. Can Anaesth Soc J 33:S92–S93

    Google Scholar 

  • Bruce DA, Langfitt TW, Miller JD et al (1973) Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients. J Neurosurg 38:131–145

    PubMed  CAS  Google Scholar 

  • Bruce DA, Raphaely RC, Goldberg AI et al (1979) Pathophysiology, treatment and outcome following severe head injury in children. Childs Brain 5:174–191

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Cold GE (2000) Studies of regional subdural pressure gradients during craniotomy. Br J Neurosurg 14:229–234

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Jensen K, Cold GE et al (1996) Effects of perioperative indomethacin on intracranial pressure, cerebral blood flow, and cerebral metabolism in patients subjected to craniotomy for cerebral tumours. J Neurosurg Anesthesiol 8:273–279

    PubMed  CAS  Google Scholar 

  • Bundgaard H, Landsfeldt U, Cold GE (1998) Subdural monitoring of ICP during craniotomy: thresholds of cerebral swelling/herniation. Acta Neurchir Suppl 71:276–278

    CAS  Google Scholar 

  • Bundgaard H, von Oettingen G, Jørgensen H et al (2001) The effects of dihydroergotamine on intracranial pressure, cerebral blood flow and cerebral metabolism in patients subjected to craniotomy for brain tumours. J Neurosurg Anesthesiol 13:195–201

    PubMed  CAS  Google Scholar 

  • Burke AM, Quest DO, Chien S et al (1981) The effects of mannitol on blood viscosity. J Neurosurg 55:550–553

    PubMed  CAS  Google Scholar 

  • Busto R, Globus MYT, Dietrich WD et al (1989) Effect of mild hypothermia on ischemic-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20:904–910

    PubMed  CAS  Google Scholar 

  • Cain SM (1963) An attempt to demonstrate cerebral anoxia during hyperventilation of anaesthetized dogs. Am J Physiol 204:323–326

    PubMed  CAS  Google Scholar 

  • Carey BJ, Manktelow BN, Panerai RB et al (2001) Cerebral autoregulation responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope. Circulation 21:898–902

    Google Scholar 

  • Carlsson C, Hägerdal M, Siesjö BK (1976) Protective effect of hypothermia in cerebral oxygen deficiency caused by arterial hypoxia. Anesthesiology 44:27–34

    PubMed  CAS  Google Scholar 

  • Carmona Suazo JA, Maas AIR, van den Brink WA (2000) CO2 reactivity and brain oxygen pressure monitoring in severe head injury. Crit Care Med 28:3268–3274

    PubMed  CAS  Google Scholar 

  • Chambers IR, Kane PJ, Signorini DF et al (1998) Bilateral ICP monitoring: its importance in detecting the severity of secondary insults. Acta Neurochir Suppl 71:42–43

    PubMed  CAS  Google Scholar 

  • Chambers IR, Banister K, Mendelow AD (2001) Intracranial pressure within a developing intracerebral haemorrhage. Br J Neurosurg 15:140–141

    PubMed  CAS  Google Scholar 

  • Changaris DG, McGraw CP, Richardson JD et al (1987) Correlation of cerebral perfusion pressure and Glasgow coma scale to outcome. J Trauma 27:1007–1012

    PubMed  CAS  Google Scholar 

  • Chi OZ, Lu X, Wei HM et al (1996) Hydroxyethyl starch solution attenuates blood-brain barrier disruption caused by intracarotid injection of hyperosmolar mannitol in rats. Anesth Analg 83:226–341

    Google Scholar 

  • Chopp M, Knight R, Tidwell CD et al (1989) The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: comparison to normothermia and hyperthermia. J Cereb Blood Flow Metab 9:141–148

    PubMed  CAS  Google Scholar 

  • Christensen MS (1974) Acid-base changes in cerebrospinal fluid and blood, and blood volume changes following prolonged hyperventilation in man. Br J Anaesth 46:348–357

    PubMed  CAS  Google Scholar 

  • Chung C, Gottstein J, Blei AT (2001) Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 34:249–254

    PubMed  CAS  Google Scholar 

  • Clemmesen JO, Hansen BA, Larsen FS (1997) Indomethacin normalizes intracranial pressure in acute liver failure: a twenty-three-year-old woman treated with indomethacin. Hepatology 26:1423–1425

    PubMed  CAS  Google Scholar 

  • Clifton GL, Jiang JY, Lyeth BG et al (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11:114–121

    PubMed  CAS  Google Scholar 

  • Clifton GL, Allen S, Barrodale P et al (1993) A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma 10:263–271

    PubMed  CAS  Google Scholar 

  • Cohen PJ (1981) To dream the impossible dream (editorial view). Anesthesiology 55: 491–493

    PubMed  CAS  Google Scholar 

  • Cold GE (1978) Cerebral metabolic rate of oxygen (CMR O2) in the acute phase of brain injury. Acta Anaesthesiol Scand 22:249–256

    PubMed  CAS  Google Scholar 

  • Cold GE (1989a) Measurement of CO2 reactivity and barbiturate reactivity in patients with severe head injury. Acta Neurochir 98:153–163

    CAS  Google Scholar 

  • Cold GE (1989b) Does acute hyperventilation provoke cerebral oligaemia in comatose patients after acute head injury? Acta Neurochir (Wien) 96:100–106

    CAS  Google Scholar 

  • Cold GE, Felding M (1993) Even small doses of morphine might provoke “luxury perfusion” in the postoperative period after craniotomy. Neurosurgery 32:327

    PubMed  CAS  Google Scholar 

  • Cold GE, Enevoldsen EM, Malmros R (1975) The prognostic value of continuous intraventricular pressure recording in unconscious brain-injured patients under controlled ventilation. In: Lundberg N, Pontén U, Brock M (eds) Intracranial pressure II. Springer, Berlin, pp 517–521

    Google Scholar 

  • Cold GE, Jensen FT, Malmros R (1977a). The cerebrovascular CO2 reactivity during the acute phase of brain injury. Acta Anaesthesiol Scand 21:222–231

    CAS  Google Scholar 

  • Cold GE, Jensen FT, Malmros R (1977b). The effects of Pa CO2 reduction on regional cerebral blood flow in the acute phase of brain injury. Acta Anaesth Scand 21:359–367

    CAS  Google Scholar 

  • Cold GE, Eskesen V, Eriksen H et al (1986) Changes in CMR O2, EEG and concentration of etomidate in serum and brain tissue during craniotomy with continuous etomidate supplemented with N2O and fentanyl. Acta Anaesthesiol Scand 30:159–163

    PubMed  CAS  Google Scholar 

  • Cold GE, Tange M, Jensen TM et al (1996) Subdural pressure measurement during craniotomy. Correlation with tactile estimation of dura tension and brain herniation after opening of dura. Br J Neurosurg 10:69–75

    PubMed  CAS  Google Scholar 

  • Coles JP, Minhas PS, Fryer TD et al (2002) Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med 30:1950–1959

    PubMed  CAS  Google Scholar 

  • Connolly JE, Boyd RJ, Calvin JW (1962) The protective effect of hypothermia in cerebral ischaemia. Experimental and clinical application by selective brain cooling in the human. Surgery 52:15–24

    PubMed  CAS  Google Scholar 

  • Constantini S, Cotev S, Rappaport H et al (1988) Intracranial pressure monitoring after elective intracranial surgery. J Neurosurg 69:540–544

    PubMed  CAS  Google Scholar 

  • Cooper PR, Moody S, Clark WK et al (1979) Dexamethasone and severe head injury. A prospective double-blind study. J Neurosurg 51:307–316

    PubMed  CAS  Google Scholar 

  • Cooper DJ, Myles PS, McDermott FT et al (2004). Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291:1350–1357

    PubMed  CAS  Google Scholar 

  • Cottrell JE, Robustelli A, Post K et al (1977) Furosemide- and mannitol-induced changes in intracranial pressure and serum osmolality and electrolytes. Anesthesiology 47:28–30

    PubMed  CAS  Google Scholar 

  • Cottrell JE, Hartung J, Giffin JP et al (1983) Intracranial and hemodynamic changes after succinyl administration in cats. Anesth Analg 62:1006–1009

    PubMed  CAS  Google Scholar 

  • CRASH trial collaboration (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomized placebo-controlled trial. Lancet 364:1321–1328

    Google Scholar 

  • Cruz J (1993) Combined continuous monitoring of systemic and cerebral oxygenation in acute brain injury: preliminary observations. Crit Care Med 21:1225–1232

    PubMed  CAS  Google Scholar 

  • Cruz J (1998) The first decade of continuous monitoring of jugular bulb oxyhaemoglobin saturation: management strategies and clinical outcome. Crit Care Med 26:344–351

    PubMed  CAS  Google Scholar 

  • Cruz J, Jaggi JL, Hoffstad OJ (1995) Cerebral blood flow, vascular resistance, and oxygen metabolism in acute brain trauma: redefining the role of cerebral perfusion pressure? Crit Care Med 23:1412–1417

    PubMed  CAS  Google Scholar 

  • Cruz J, Minoja G, Okuchi K (2001) Improving clinical outcomes from acute subdural haematomas with the emergency preoperative administration of high doses of mannitol: a randomized trial. Neurosurgery 49:864–871

    PubMed  CAS  Google Scholar 

  • Cruz J, Minoja G, Okuchi K (2002) Major clinical and physiological benefits of early high doses of mannitol for intraparenchymal temporal hemorrhages with abnormal pupillary widening: a randomized study. Neurosurgery 51:628–637

    PubMed  Google Scholar 

  • Cruz J, Minoja G, Okuchi K et al (2004) Successful use of the new high-dose mannitol treatment in patients with Glasgow Coma Scale scores of 3 and bilateral abnormal papillary widening: a randomized trial. J Neurosurg 100:376–383

    PubMed  Google Scholar 

  • Cushing H (1903) The blood pressure reaction of acute cerebral compression, illustrated by cases of intracranial hemorrhage. Am J Med Sci 125:1017–1044

    Google Scholar 

  • Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75:813–821

    PubMed  CAS  Google Scholar 

  • Czosnyka M, Price DJ, Williamson M (1994) Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Acta Neurochir (Wien) 126:113–119

    CAS  Google Scholar 

  • Dahl B, Jensen K, Cold GE et al (1991) Studies of barbiturate reactivity in patients with severe head injury. Acta Anaesthesiol Scand Suppl 96:201

    Google Scholar 

  • Dahl B, Bergholt B, Kjærgaard JO et al (1996) The correlation between CO2 and indomethacin reactivity in severe head injury. Acta Neurochir 138:265–273

    CAS  Google Scholar 

  • Dahlgren N, Nilsson B, Sakabe T et al (1981) The effect of indomethacin on cerebral blood flow and oxygen consumption in the rat at normal and increased carbon dioxide tensions. Acta Physiol Scand 111:475–485

    PubMed  CAS  Google Scholar 

  • Daley ML, Han S, Leffler C (2002) Cyclic variation of cerebral pial arteriolar diameter synchronized with positive pressure inhalation. Acta Neurochir Suppl 81:143–145

    PubMed  CAS  Google Scholar 

  • Darby JM, Yonas H, Marion DW et al (1988) Local inverse steal induced by hyperventilation in head injury. Neurosurgery 23:84–88

    PubMed  CAS  Google Scholar 

  • Dearden NM, Gibson SJ, McDowall DG et al (1986) Effect of high-dose dexamethasone on outcome from severe head injury. J Neurosurg 64:81–88

    PubMed  CAS  Google Scholar 

  • Dempsey RJ, Roy MW, Meyer KL et al (1985) Indomethacin-mediated improvement following middle cerebral artery occlusion in cats. Effects of anesthesia. J Neurosurg 62:874–881

    PubMed  CAS  Google Scholar 

  • De Reuck JL (1984) Cerebral argioarchitecture and perinatal brain lesions in premature and full-term infants. Acta Neurol Scand 70:391–395

    PubMed  Google Scholar 

  • DeWitt DS, Prough DS, Deal DD et al (1996) Hypertonic saline does not improve cerebral oxygen delivery after head injury and mild hemorrhage in cats. Crit Care Med 24:109–117

    PubMed  CAS  Google Scholar 

  • Dieterich H-J, Reutershan J, Felbinger TW et al (2003) Penetration of intravenous hydroxyethyl starch into the cerebrospinal fluid in patients with impaired blood-brain barrier. Anesth Analg 96:1150–1154

    PubMed  Google Scholar 

  • Dietrich WD, Busto R, Valdes I et al (1990) Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21:1318–1325

    PubMed  CAS  Google Scholar 

  • Dings J, Meixenberger J, Amschler J et al (1996) Brain tissue p O2 in relation to cerebral perfusion pressure, TCD findings and CO2 reactivity after severe head injury. Acta Neurochir 138:425–434

    CAS  Google Scholar 

  • duCailar J, Rioux J, Groleau D et al (1964) Hypothermie au dessous de 25 par refrigeration externe et sans circulation extra-corporelle. Ann Anesth Franc 4:781–800

    Google Scholar 

  • Ducey JP, Lamiell JM, Gueller GE (1990) Cerebral electrophysiological effects of resuscitation with hypertonic saline-dextran after hemorrhage. Crit Care Med 18:744–749

    PubMed  CAS  Google Scholar 

  • Dunn LT (2002) Raised intracranial pressure. J Neurol Neurosurg Psychiatry 73 (suppl 1):i23–i27

    PubMed  Google Scholar 

  • Durwald QJ, Del Maestro RF, Amacher AL et al (1983) The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema. J Neurosurg 59:803–809

    Google Scholar 

  • Edvinsson L, McCulloch J (1981) Effects of pentobarbital on contractile responses of feline cerebral arteries. J Cereb Blood Flow Metab 1:437–440

    PubMed  CAS  Google Scholar 

  • Edwards P, Arango M, Balica L et al (2005) Final results of MRC CRASH, a randomized placebo-controlled trial of intravenous corticosteroid in adults with head injury: outcomes at 6 months. Lancet 365:1957–1959

    PubMed  Google Scholar 

  • Eide PK (2003) The relationship between intracranial pressure and size of cerebral ventricles assessed by computed tomography. Acta Neurochir 145:171–179

    CAS  Google Scholar 

  • Eisenberg HM, Frankowski RF, Contant CF et al (1988) High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg 69:15–23

    PubMed  CAS  Google Scholar 

  • Ellingsen I, Hauge A, Nicolaysen G et al (1987) Changes in human cerebral blood flow due to step changes in PaO2 and PaCO2. Acta Physiol Scand 129:157–163

    PubMed  CAS  Google Scholar 

  • Este-McDonald JR, Josephs LG, Birkett DH et al (1995) Changes in intracranial pressure associated with apneumic retractors. Arch Surg 130:362–365

    PubMed  CAS  Google Scholar 

  • Famularo G (1999) The puzzle of neuronal death and life: is mannitol the right drug for the treatment of brain oedema associated with ischemic stroke? Eur J Emerg Med 6:363–368

    PubMed  CAS  Google Scholar 

  • Fandino J, Stocker R, Prokop S et al (1999) Correlation between jugular bulb oxygen saturation and partial pressure of brain tissue oxygen during CO2 and O2 reactivity tests in severely head-injured patients. Acta Neurochir 141:825–834

    CAS  Google Scholar 

  • Faupel G, Reulen HJ, Muller D et al (1976) Double-blind study on the effects of steroids on severe closed head injury. In: Pappius HM, Feindal W (eds) Dynamics of brain edema. Springer, Berlin, pp 337–343

    Google Scholar 

  • Feldman Z, Kanter MJ, Robertson CS et al (1992) Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg 76:207–211

    PubMed  CAS  Google Scholar 

  • Feldman Z, Roberson CS, Contant CSF et al (1997) Positive end-expiratory pressure reduces intracranial compliance in the rabbit. J Neurosurg Anesthesiol 9:175–179

    PubMed  CAS  Google Scholar 

  • Fieschi C, Battistini N, Beduschi A et al (1974) Regional cerebral blood flow and intraventricular pressure in acute head injuries. J Neurol Neurosurg Psychiatry 37:1378–1388

    PubMed  CAS  Google Scholar 

  • Filipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Google Scholar 

  • Fisher B, Thomas D, Peterson B (1992) Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol 4:4–10

    PubMed  CAS  Google Scholar 

  • Fortune JB, Feustel PJ, Graca L et al (1995) Effect of hyperventilation, mannitol, and ventriculostomy drainage on cerebral blood flow after head injury. J Trauma 39:1091–1097

    PubMed  CAS  Google Scholar 

  • French LA, Galicich JH (1964) The use of steroids for control of cerebral edema. Clin Neurosurg 10:212–223

    PubMed  CAS  Google Scholar 

  • Frost EA (1977) Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg 47:195–200

    PubMed  CAS  Google Scholar 

  • Ganz JC, Hall C, Zwernow NN (1995) Cerebral blood flow during experimental epidural bleeding in swine. Acta Neurochir 103:148–157

    Google Scholar 

  • Gaudet RJ, Alam I, Levine L (1980) Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem 35:653–658

    PubMed  CAS  Google Scholar 

  • Gemma M, Tommasino C, Cerri M et al (2002) Intracranial effects of endotracheal suctioning in the acute phase of head injury. J Neurosurg Anesthesiol 14:50–54

    PubMed  Google Scholar 

  • Georgiadis D, Schwartz S, Baumgartner RW et al (2001) Influence of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure in patients with acute stroke. Stroke 32:2088–2092

    PubMed  CAS  Google Scholar 

  • Giffin JP, Hartung J, Cottrell et al (1986) Effect of vecuronium on intracranial pressure, mean arterial pressure and heart rate in cats. Br J Anesth 58:441–443

    CAS  Google Scholar 

  • Gilles FH, Leviton A, Kerr CS (1976) Endotoxin leucoencephalopathy in the telencephalon of the newborn kitten. J Neurol Sci 27:183–191

    PubMed  CAS  Google Scholar 

  • Glaser N, Barnett P, McCaslin I et al (2001) Risk factors for cerebral oedema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 344:264–269

    PubMed  CAS  Google Scholar 

  • Gleason CA, Short BL, Jones MD Jr (1989) Cerebral blood flow and metabolism during and after prolonged hypocapnia in newborn lambs. J Pediatr 115:309–314

    PubMed  CAS  Google Scholar 

  • Gobiet W, Bock WJ, Liesgang J et al (1976) Treatment of acute cerebral edema with high dose of dexamethasone. In: Beks JWF et al (eds) Intracranial pressure III. Springer, Berlin, pp 231–235

    Google Scholar 

  • Gopinath SP, Valadka AB, Uzura M et al (1999) Comparison of jugular venous oxygen saturation and brain tissue P O2 as monitors of cerebral ischaemia after head injury. Crit Care Med 27:2337–2345

    PubMed  CAS  Google Scholar 

  • Gordon E (1970) The action of drugs on intracranial contents. In: Boulton TB, Bryce-Smith R et al (eds) Progress in anaesthesiology. Excerpta Medica, Amsterdam, p 60

    Google Scholar 

  • Gotoh F, Meyer JS, Takagi Y (1965) Cerebral effects of hyperventilation in man. Arch Neurol 12:410–423

    PubMed  CAS  Google Scholar 

  • Graham EM, Apostolou M, Mishra OP et al (1996) Modification of the N-methyl-D- Aspartate (NMDA) receptor in the brain of newborn piglets following hyperventilation induced ischemia. Neurosci Lett 218:29–32

    PubMed  CAS  Google Scholar 

  • Grände P-O (1989) The effects of dihydroergotamine in patients with head injury and raised intracranial pressure. Intensive Care Med 15:523–527

    PubMed  Google Scholar 

  • Grände P-O (2006) The “Lund Concept” for the treatment of severe head trauma: physiological principles and clinical application. Intensive Care Med 32:1475–1484

    PubMed  Google Scholar 

  • Greenberg JH, Alavi A, Reivich M et al (1978) Local cerebral blood volume response to carbon dioxide in man. Circ Res 43:324–331

    PubMed  CAS  Google Scholar 

  • Greenwood J, Luthert PJ, Pratt OE et al (1988) Hyperosmolar opening of the blood-brain barrier in energy-depleted rat brain. Part I. Permeability studies. J Cereb Blood Flow Metab 8:9–15

    PubMed  CAS  Google Scholar 

  • Greisen G, Munck H, Lou H (1987) Severe hypocapnia in preterm infants and neurodevelopmental deficit. Acta Paediatr Scand 76:401–404

    PubMed  CAS  Google Scholar 

  • Gross CE, Abel PW (1985) Contraction and relaxation of rabbit basilar artery by thiopental. Neurosurgery 17:433–435

    PubMed  CAS  Google Scholar 

  • Grubb RL, Raichle ME, Eichling JO et al (1974) The effects of changes in Pa CO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–638

    PubMed  Google Scholar 

  • Grubb RL, Raichle ME, Eichling JO et al (1977) Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow and oxygen utilization in humans. J Neurosurg 46:446–453

    PubMed  Google Scholar 

  • Gudeman SK, Miller JD, Becker DP (1979) Failure of high-dose steroid therapy to influence intracranial pressure in patients with severe head injury. J Neurosurg 51:301–306

    PubMed  CAS  Google Scholar 

  • Guieu JD, Lapierre M, Blond S et al (1979) Correlations between intracranial pressure variations and EEG changes in patients with cranial trauma (translated). Rev Electroencephalogr Neurophysiol Clin 9:194–201

    PubMed  CAS  Google Scholar 

  • Haddad GG, Jiang C (1997) O2-sensing mechanisms in excitable cells: role of plasma membrane K+ channels. Annu Rev Physiol 59:23–42

    PubMed  CAS  Google Scholar 

  • Hallenbeck JM, Furlow TW (1979) Prostaglandin I2 and indomethacin prevent impairment of post-ischemic brain reperfusion in the dog. Stroke 10:629–637

    PubMed  CAS  Google Scholar 

  • Halverson A, Buchanan R, Jacobs L et al (1998) Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc 12:266–269

    PubMed  CAS  Google Scholar 

  • Haring HP, Hormann C, Schalow S et al (1994) Continuous positive airway pres- sure breathing increases cerebral blood flow velocity in humans. Anesth Analg 79: 883–885

    PubMed  CAS  Google Scholar 

  • Hariri RJ, Firlich AD, Shepard SR et al (1993) Traumatic brain injury, hemorrhagic shock, and fluid resuscitation: effects on intracranial pressure and brain compliance. J Neurosurg 79:421–427

    PubMed  CAS  Google Scholar 

  • Harp JR, Wollman H (1973) Cerebral metabolic effects of hyperventilation and deliberate hypotension. Br J Anaesth 45:256–262

    PubMed  CAS  Google Scholar 

  • Harris RJ, Bayhan M, Branston NM et al (1982) Modulation of the pathophysiology of primate focal cerebral ischaemia by indomethacin. Stroke 13:17–24

    PubMed  CAS  Google Scholar 

  • Härtl R, Schürer L, Dautermann C et al (1993) Effect of hypertonic-hyperoncotic solutions (HHS) on increased intracranial pressure after a focal brain lesion and inflation of an epidural balloon. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 612–614

    Google Scholar 

  • Härtl R, Medary MB, Ruge M et al (1997) Early white blood cell dynamics after traumatic brain injury: effects on cerebral microcirculation. J Cereb Blood Flow Metab 17:1210–1220

    PubMed  Google Scholar 

  • Haure P, Cold GE, Hansen TM et al (2003) The ICP-lowering effect of 10° reverse Trendelenburg position during craniotomy is stable during a 10-minute period. J Neurosurg Anesthesiol 15:297–301

    PubMed  Google Scholar 

  • Havill JH (1984) Prolonged hyperventilation and intracranial pressure. Crit Care Med 12:72–74

    PubMed  CAS  Google Scholar 

  • Haxhiu MA, van Lunteren E, Deal EC et al (1989) Role of the ventral surface of medulla in the generation of Mayer waves. Am J Physiol 257:R804–R809

    PubMed  CAS  Google Scholar 

  • Hering R, Wrigge H, Vorwerk R et al (2001) The effects of prone positioning in intraabdominal pressure and cardiovascular and renal function in patients with acute lung injury. Anesth Analg 92:1226–1231

    PubMed  CAS  Google Scholar 

  • Himmelseher S, Pfenninger E, Morin P et al (2001) Hypertonic-hyperoncotic saline differentially affects healthy and glutamate-injured primary rat hippocampus neurons and cerebral astrocytes. J Neurosurg Anesthesiol 13:120–130

    PubMed  CAS  Google Scholar 

  • Hochwald GM, Wald A, Malhan C (1976) The sink action of cerebrospinal fluid volume flow. Arch Neurol 33:339–344

    PubMed  CAS  Google Scholar 

  • Hoffman WE, Werner C, Baughman VL et al (1991) Postischemic treatment with hypothermia improves outcome from incomplete cerebral ischemia in rats. J Neurosurg Anesthesiol 3:34–38

    PubMed  CAS  Google Scholar 

  • Hörmann C, Mohsenipour I, Gottardis M et al (1994) Response of cerebrospinal fluid pressure to continuous positive airway pressure in volunteers. Anesth Analg 78:54–57

    PubMed  Google Scholar 

  • Howells T, Elf K, Jones PA et al (2005) Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg 102:311–317

    PubMed  Google Scholar 

  • Hulme A, Cooper R (1976) The effects of head position and jugular vein compression on intracranial pressure. A clinical study. In: Beks JWF, Bosch DA, Brock M (eds) Intracranial pressure III. Springer, Berlin, pp 259–263

    Google Scholar 

  • Hung OR, Hare GM, Brien S (2000) Head elevation reduces head-rotation associated increased ICP in patients with intracranial tumours. Can J Anaesth 47:415–420

    PubMed  CAS  Google Scholar 

  • Hunter AR (1972) Thiopentone supplemented anaesthesia for neurosurgery. Br J Anaesth 44:506–510

    PubMed  CAS  Google Scholar 

  • Imberti R, Ciceri M, Bellinzona G et al (2000) The use of hyperventilation in the treatment of plateau waves in two patients with severe traumatic brain injury: contrasting effects on cerebral oxygenation. J Neurosurg Anesthesiol 12:124–127

    PubMed  CAS  Google Scholar 

  • Imberti R, Bellinzona G, Langer M (2002) Cerebral tissue P O2 and Sjv O2 changes during moderate hyperventilation in patients with severe traumatic brain injury. J Neurosurg 96:97–102

    PubMed  Google Scholar 

  • Ito U, Ohno K, Nakamura R et al (1979) Brain edema during ischemia after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10:542–547

    PubMed  CAS  Google Scholar 

  • Jafar JJ, Johns LM, Mullan SF (1986) The effect of mannitol on cerebral blood flow. J Neurosurg 64:754–759

    PubMed  CAS  Google Scholar 

  • Jaggi JL, Obrist WD, Gennarelli TA et al (1990) Relationship of early cerebral blood flow and metabolism to outcome in acute head injury. J Neurosurg 72:176–182

    PubMed  CAS  Google Scholar 

  • James HE (1978) Cytotoxic edema produced by 6-aminonicotinamide and its response to therapy. Neurosurgery 3:196–200

    PubMed  CAS  Google Scholar 

  • James HE (1980) Methodology for the control of intracranial pressure with hypertonic mannitol. Acta Neurochir (Wien) 51:161–172

    CAS  Google Scholar 

  • Jennett WB, Teasdale C (1981) Management of head injuries in the acute state. Davis, Philadelphia, pp 240–241

    Google Scholar 

  • Jensen K, Öhrström J, Cold GE et al (1991) The effects of indomethacin on intracranial pressure, cerebral blood flow, and cerebral metabolism in patients with severe head injury and intracranial hypertension. Acta Neurochir (Wien) 108:116–121

    CAS  Google Scholar 

  • Jensen K, Freundlich M, Bünemann L et al (1993) The effect of indomethacin upon cerebral blood flow in healthy volunteers. The influence of moderate hypoxia and hypercapnia. Acta Neurochir (Wien) 124:114–119

    CAS  Google Scholar 

  • Jensen K, Kjaergaard S, Malte E et al (1996) Effect of graduated intravenous and standard rectal doses of indomethacin on cerebral blood flow in healthy volunteers. J Neurosurg Anesthesiol 8:111–116

    PubMed  CAS  Google Scholar 

  • Johnston AJ, Steiner LA, Balestreri M et al (2003) Hyperoxia and cerebral haemodynamic responses to moderate hyperventilation. Acta Anaesthesiol Scand 47:391–396

    PubMed  CAS  Google Scholar 

  • Johnstone IH, Harper AM (1973) The effect of mannitol on cerebral blood flow. An experimental study. J Neurosurg 38:461–471

    Google Scholar 

  • Jones SJ, Dinsmore J (2002) Effect of diclofenac on cerebral blood flow velocity in patients with supratentorial tumours. Br J Anaesth 89:762–764

    PubMed  CAS  Google Scholar 

  • Jørgensen HA, Bundgaard H, Cold GE (1999) Subdural pressure measurement during fossa posterior surgery. Br J Neurosurg 13:449–453

    PubMed  Google Scholar 

  • Josephs LG, Este-McDonald E, Birkett DH et al (1994) Diagnostic laparoscopy increases intracranial pressure. J Trauma 36:815–818

    PubMed  CAS  Google Scholar 

  • Kalmar AF, van Aken J, Caemaert J et al (2005) Value of Cushing reflex as warning sign for brain ischaemia during neuroendoscopy. Br J Anaesth 94:791–799

    PubMed  CAS  Google Scholar 

  • Kanter MJ, Robertson CS, Sheinberg MA et al (1993) Changes in cerebral haemodynamics with head elevated vs. head flat. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, p 79

    Google Scholar 

  • Kassell NF, Hitchon PW, Gerk MK et al (1980) Alterations in cerebral blood flow, oxygen metabolism, and electrical activity produced by high dose sodium thiopental. Neurosurgery 7:598–603

    PubMed  CAS  Google Scholar 

  • Kassell NF, Baumann KW, Hitchon PW et al (1982) The effects of high dose mannitol on cerebral blood flow in dogs with normal intracranial pressure. Stroke 13:59–61

    PubMed  CAS  Google Scholar 

  • Kaufmann AM, Cardoso ER (1992) Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 77:584–589

    PubMed  CAS  Google Scholar 

  • Kazan S, Karasoy M, Baloglu H et al (1999) The effect of mild hypothermia, mannitol and insulin-induced hypoglycaemia on ischemic infarct volume in the early period after permanent middle cerebral artery occlusion in the rat. Acta Neurochir 141:979–987

    CAS  Google Scholar 

  • Kellie G (1824) An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1921 with some reflections on the pathology of the brain. Trans Med Chir Sci, Edinburgh, 1:84–169

    Google Scholar 

  • Kempski O, Obert C, Mainka T et al (1996) “Small volume resuscitation” as treatment of cerebral blood flow disturbances and increased ICP in trauma and ischemia. Acta Neurochir Suppl 66:114–117

    PubMed  CAS  Google Scholar 

  • Kenning JA, Toutant SM, Saunders RL (1981) Upright patient positioning in the management of intracranial hypertension. Surg Neurol 15:148–152

    PubMed  CAS  Google Scholar 

  • Khanna S, Davis D, Peterson B et al (2000) Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med 28:4:1144–1151

    Google Scholar 

  • Kien RD, Reitan JA, White DA et al (1991a) Cardiac contractility and blood flow distribution following resuscitation with 7.5% hypertonic saline in anesthetized dogs. Circ Shock 35:109–116

    CAS  Google Scholar 

  • Kien ND, Kramer GC, White DA (1991b) Acute hypotension caused by rapid hypertonic saline infusion in anesthetized dogs. Anesth Analg 73:597–602

    CAS  Google Scholar 

  • Kiening KL, Schoening WN, Lanksch WR et al (2002) Intracranial compliance as bed-side monitoring technique in severely head-injured patients. Acta Neurochir Suppl 81:177–180

    PubMed  CAS  Google Scholar 

  • Kim B, Feldman EL (2002) Insulin-like growth factor I prevents mannitol-induced degradation of focal adhesion kinase and Akt. J Biol Chem 26:27393–27400

    Google Scholar 

  • Kim HJ, Levasseur JE, Patterson JL et al (1989) Effect of indomethacin pretreatment on acute mortality in experimental brain injury. J Neurosurg 71:565–572

    PubMed  CAS  Google Scholar 

  • Kim W, Moon SO, Sung MJ et al (2002) Protective effect of adrenomedullin in mannitol-induced apoptosis. Apoptosis 7:527–536

    PubMed  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M et al (1991) Hyperthermia-induced neuronal protection against ischemic injury in gerbils. J Cereb Blood Flow Metab 11:449–452

    PubMed  CAS  Google Scholar 

  • Kitahata LM, Galicich JM, Sato I (1971) The effect of passive hyperventilation on intracranial pressure. J Neurosurg 34:185–193

    PubMed  CAS  Google Scholar 

  • Koide T, Wieloch TW, Siesjö BK (1986) Chronic dexamethasone pretreatment aggravates ischemic neuronal necrosis. J Cereb Blood Flow Metab 6:395–404

    PubMed  CAS  Google Scholar 

  • Kojima T, Iwat K, Tamai K (1993) Change of cerebral electrophysiological activity, regional cerebral blood flow and regional cerebral blood volume in acute intracranial hypertension. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 249–252

    Google Scholar 

  • Kolbitsch C, Lorenz IH, Hoermann C et al (2000) The influence of increased intrathoracic pressure on cerebral compliance in humans. Proc XI ICP Symp, Cambridge P17-8, p 286

    Google Scholar 

  • Kolbitsch C, Lorenz ICH, Hörmann C et al (2002) The impact of hypercapnia on systolic cerebrospinal fluid peak velocity in the aqueduct of Sylvius. Anesth Analg 95:1049–1051

    PubMed  Google Scholar 

  • Korenkov AI, Pahnke J, Frei K et al (2000) Treatment with nimodipine or mannitol reduces programmed cell death and infarct size following cerebral ischemia. Neurosurg Rev 23:145–150

    PubMed  CAS  Google Scholar 

  • Kramer GC, Perron PR, Lindsey DC et al (1986) Small-volume resuscitation with hypertonic saline dextran solution. Surgery 100:239–247

    PubMed  CAS  Google Scholar 

  • Kuchiwaki H, Misu N, Takada S et al (1992) Measurement of local directional pressures in the brain with mass. Neurosurgery 31:731–738

    PubMed  CAS  Google Scholar 

  • Laffey JG, Kavanagh BP (2002) Hypocapnia. N Engl J Med 347:43–53

    PubMed  CAS  Google Scholar 

  • Langfitt TW, Weinstein JD, Kassell NF et al (1964) Transmission of increased intracranial pressure within the craniospinal axis. J Neurosurg 21:989–997

    PubMed  CAS  Google Scholar 

  • Lanier WL, Milde JH, Michenfelder JD (1985) The cerebral effects of pancuronium and atracurium in halothane-anesthetized dogs. Anesthesiology 63:589–597

    PubMed  CAS  Google Scholar 

  • Lanier WL, Milde JH, Michenfelder JD (1986) Cerebral stimulation following succinylcholine in dogs Anesthesiology 64:551–559

    PubMed  CAS  Google Scholar 

  • Lanier WL, Iaizzo PA, Milde JH (1989) Cerebral function and muscle afferent activity following intravenous succinylcholine in dogs anesthetized with halothane: the effects of pretreatment with a defasciculating dose of pancuronium. Anesthesiology 71:87–95

    PubMed  CAS  Google Scholar 

  • Larsen R, Hilfiker O, Radle J et al (1981) Midazolam: Wirkung auf allgemeine Hämodynamik, Hirndurchblutung und Cerebralen Sauerstoffverbrauch bei Neurochirurgischen Patienten. Anesthetist 30:18–21

    CAS  Google Scholar 

  • Larsen JR, Haure P, Cold GE (2002) Reverse Trendelenburg position reduces intracranial pressure during craniotomy. J Neurosurg Anesthesiol 14:16–21

    Google Scholar 

  • Lee ST (1989) Intracranial pressure changes during positioning of patients with severe head injury. Heart Lung 18:411–414

    PubMed  CAS  Google Scholar 

  • Lescot T, Naccache L, Bonnet MP et al (2005) The relationship of intracranial pressure Lundberg waves to electroencephalograph fluctuations in patients with severe head trauma. Acta Neurochir 147:125–129

    CAS  Google Scholar 

  • Little JR (1978) Modification of acute focal ischaemia by treatment with mannitol. Stroke 9:4–9

    PubMed  CAS  Google Scholar 

  • Lodrini S, Montolivo M, Pluchino F et al (1989) Positive end-expiratory pressure in supine and sitting positions: its effects on intrathoracic and intracranial pressures. Neurosurgery 24:873–877

    PubMed  CAS  Google Scholar 

  • Long DM, Maxwell R, Choi KS (1976) A new therapy regimen for brain edema. In: Pappius HM, Feidal W (eds) Dynamics of brain edema. Springer, Berlin, pp 293–300

    Google Scholar 

  • Lukins MB, Manninen PH (2005) Hyperglycemia in patients administered dexamethasone for craniotomy. Anesth Analg 100:1129–1133

    PubMed  CAS  Google Scholar 

  • Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand 36(suppl 149):1–193

    CAS  Google Scholar 

  • Lundberg N, Kjällquist A, Bien C (1959) Reduction of increased intracranial pressure by hyperventilation. Acta Psychiatr Neurol Scand 34(suppl 139)

    Google Scholar 

  • Maas AIR, Fleckenstein W, deJong DA et al (1993) Effect of increased ICP and decreased cerebral perfusion pressure on brain tissue and cerebrospinal fluid oxygen tension. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 233–237

    Google Scholar 

  • Maas AIR, Dearden M, Teasdale GM et al (1997) EBIC guidelines for management of severe head injury in adults. Acta Neurochir 139:286–294

    CAS  Google Scholar 

  • MacDonald JT, Uden DL (1982) Intravenous glycerol and mannitol therapy in children with intracranial hypertension. Neurology 32:437–440

    PubMed  CAS  Google Scholar 

  • MacKenzie ET, McCullock J, O’Keane M et al (1976) Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Physiol 231:483–488

    PubMed  CAS  Google Scholar 

  • Maeda M, Miyazaki M (1998) Control of ICP and cerebrovascular bed by the cholinergic basal forebrain. Acta Neurochir Suppl 71:293–296

    PubMed  CAS  Google Scholar 

  • Maeda M, Miyazaki M, Ishii S (1989) The role of the mutual interaction between the locus coeruleus complex and the cholinoceptive pontine area in the plateau wave. In: Hoff JT, Betz AL (eds) Intracranial pressure VII. Springer, Berlin, pp 228–231

    Google Scholar 

  • Maeda M, Miyazaki M, Ishii S (1993) Control of ICP by the medullary reticular formation. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 207–213

    Google Scholar 

  • Maioriello A, Chaljub G, Nauta HJW et al (2002). Chemical shift imaging of mannitol in acute cerebral ischemia. J Neurosurg 87:687–691

    Google Scholar 

  • Mak S, Egri Z, Tanna G et al (2002) Vitamin C prevents hyperoxia-mediated vasoconstriction and impairment of endothelium-dependent vasodilatation. Am J Physiol Heart Circ Physiol 282:H2414–H2421

    PubMed  CAS  Google Scholar 

  • Malek AM, Goss GG, Jiang L et al (1998) Mannitol at clinical concentrations activates multiple signaling pathways and induces apoptosis in endothelial cells. Stroke 29:2631–2640

    PubMed  CAS  Google Scholar 

  • Manninen PH, Lam AM, Gelb AW et al (1987) The effect of high-dose mannitol on serum and urine electrolytes and osmolality in neurosurgical patients. Can J Anaesth 34:442–446

    PubMed  CAS  Google Scholar 

  • Manno EM, Adams RE, Derdeyn CP et al (1999) The effects of mannitol on cerebral edema after large hemispheric cerebral infarct. Neurology 52:583–587

    PubMed  CAS  Google Scholar 

  • March Ml, Dunlop BJ, Shapiro HM et al (1980) Succinylcholine-intracranial pressure effects in neurosurgical patients. Anesth Analg 59:550–551

    Google Scholar 

  • Marin J, Lobato RD, Rico ML et al (1981) Effect of pentobarbital on the reactivity of isolated human cerebral arteries. J Neurosurg 54:521–524

    PubMed  CAS  Google Scholar 

  • Marion DW, Obrist WD, Carlien PM et al (1993) The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 79:354–362

    PubMed  CAS  Google Scholar 

  • Marion DW, Penrod LE, Kelsey SF et al (1997) Treatment of traumatic brain injury with moderate hypothermia. New Engl J Med 336:540–545

    PubMed  CAS  Google Scholar 

  • Marshall LF, Smith RW, Rauscher LA et al (1978) Mannitol dose requirements in brain-injured patients. J Neurosurg 48:169–172

    PubMed  CAS  Google Scholar 

  • Marshall WK, Page RB, Milchak MA (1982) Furosemide reduces brain water in cerebral injury in dogs. Anesthesiology 57:A308

    Google Scholar 

  • Marshall LF, Zovickian J, Ostrup R et al (1986) Multiple simultaneous recordings of ICP in patients with acute mass lesions. In: Miller JD, Teasdale GM, Rowan JO et al (eds) Intracranial pressure VI. Springer, Berlin, pp 184–186

    Google Scholar 

  • Martins AN, Doyle TF, Newby N (1976) PaCO2 and rate of formation of cerebrospinal fluid in the monkey. Am J Physiol 231:127–131

    PubMed  CAS  Google Scholar 

  • Marx W, Shah N, Long C et al (1989) Sufentanil, alfentanil, and fentanyl: impact on cerebrospinal fluid pressure in patients with brain tumors. J Neurosurg Anesthesiol 1:3–7

    PubMed  CAS  Google Scholar 

  • Mascia L, Grasso S, Puntillo F et al (2000) The effects of PEEP on cerebral haemodynamics in severe brain injured patients with acute lung injury. Intensive Care Med 123

    Google Scholar 

  • Mascia L, Grasso S, Fiore T et al (2005) Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med 31:373–379

    PubMed  Google Scholar 

  • Mavrocordatos P, Bissonnette P, Ravussion P (2000) Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol 12:10–14

    PubMed  CAS  Google Scholar 

  • Mayhall CG, Archer NH, Lamb VA et al (1984) Ventriculostomy-related infections. A prospective epidemiological study. N Eng J Med 310:553–559

    CAS  Google Scholar 

  • Mayzler O, Leon A, Eilig I et al (2006) The effect of hypertonic (3%) saline with and without furosemide on plasma osmolality, sodium concentration, and brain water content after closed head trauma in rats. J Neurosurg Anesthesiol 18:24–31

    PubMed  Google Scholar 

  • Mazzoni MC, Borgstrom P, Arfors KE et al (1988) Dynamic fluid redistribution in hyperosmotic resuscitation of hypovolemic hemorrhage. Am J Physiol 255:H629–H637

    PubMed  CAS  Google Scholar 

  • McGuire G, Crossley D, Richards J et al (1997) Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med 25:1059–1062

    PubMed  CAS  Google Scholar 

  • Mchedlishvili G (1988) Pathogenetic role of circulatory factors in brain oedema development. Neursurg Rev 11:7–13

    CAS  Google Scholar 

  • McHenry LC Jr, Jaffe ME, West JW et al (1972) Regional cerebral blood flow and cardiovascular effects of hexobendine in stroke patients. Neurology (Minneap) 22:217–223

    PubMed  Google Scholar 

  • McLaughlin MR, Marion DW (1996) Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg 85:871–876

    PubMed  CAS  Google Scholar 

  • McQueen JD, Jeanes LD (1964) Dehydration and rehydration of the brain with hypertonic urea and mannitol. J Neurosurg 11:118–128

    Google Scholar 

  • Meixensberger J, Brawanski A, Danhauser-Leistner I et al (1993) Is there a risk to induce ischemia by hyperventilation therapy? In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 589–591

    Google Scholar 

  • Meixensberger J, Baunach S, Amschler J et al (1997) Influence of body position on tissue-p O2, cerebral perfusion pressure and intracranial pressure in patients with acute brain injury. Neurol Res 19:249–253

    PubMed  CAS  Google Scholar 

  • Meixensberger J, Jager A, Dings J et al (1998) Multimodal haemodynamic neuromonitoring: quality and consequences for therapy of severely head injured patients. Acta Neurochir Suppl 71:260–262

    PubMed  CAS  Google Scholar 

  • Mellander S, Nordenfelt I (1970) Comparative effects of dihydroergotamine and noradrenalin on resistance exchange and capacitance functions in the peripheral circulation. Clin Sci 39:183–201

    PubMed  CAS  Google Scholar 

  • Merlo F, Demo P, Moreth T et al (1993) Propofol vs. thiopental for the control of elevated ICP in head injured patients. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 629–631

    Google Scholar 

  • Messeter K, Nordström C-H, Sundbärg G et al (1986) Cerebral haemodynamics in patients with severe head trauma. J Neurosurg 64:231–237

    PubMed  CAS  Google Scholar 

  • Metz C, Holzschuh M, Bein T et al (1996) Moderate hypothermia in patients with severe head injury: Cerebral and extracerebral effects. J Neurosurg 85:533–541

    PubMed  CAS  Google Scholar 

  • Meyer FB, Anderson RE, Sundt TM et al (1987) Treatment of experimental focal cerebral ischaemia with mannitol. J Neurosurg 66:109–115

    PubMed  CAS  Google Scholar 

  • Michenfelder JD (1974) The interdependency of cerebral functional and metabolic effects following massive doses of thiopental in the dog. Anesthesiology 41:231–236

    PubMed  CAS  Google Scholar 

  • Michenfelder JD, Milde JH (1977) Failure of prolonged hypocapnia, hypothermia or hypertension to favourably alter acute stroke in primates. Stroke 8:87–91

    PubMed  CAS  Google Scholar 

  • Michenfelder JD, Milde JH (1991) The relationship among canine brain temperature, metabolism, and function during hypocapnia. Anesthesiology 75:130–136

    PubMed  CAS  Google Scholar 

  • Michenfelder JD, Sundt TM (1973) The effect of Pa CO2 on the metabolism of ischemic brain in squirrel monkeys. Anesthesiology 38:445–453

    PubMed  CAS  Google Scholar 

  • Milde LN, Milde JH, Michenfelder JD (1985) Cerebral functional, metabolic, and haemodynamic effects of etomidate in dogs. Anesthesiology 63:371–377

    PubMed  CAS  Google Scholar 

  • Milde LN, Milde JH, Gallagher W (1990) Effects of sufentanil on cerebral circulation and metabolism in dogs. Anesth Analg 70:138–146

    PubMed  CAS  Google Scholar 

  • Miller JD, Leech P (1975) Effects of mannitol and steroid therapy on intracranial volume-pressure relationships in patients. J Neurosurg 42:274–281

    PubMed  CAS  Google Scholar 

  • Miller JD, Becker DP, Ward JD et al (1977) Significance of intracranial hypertension in severe head injury. J Neurosurg 47:503–513

    PubMed  CAS  Google Scholar 

  • Miller JD, Wilkinson HA, Rosenfeld SA et al (1986) Intracranial hypertension and cerebrospinal fluid production in dogs: effects of furosemide. Exp Neurol 94:66–80

    PubMed  CAS  Google Scholar 

  • Miller JD, Peeler DF, Pattisapu J et al (1987) Supratentorial pressure. Part 1: differential intracranial pressure. Neurol Res 9:16–26

    Google Scholar 

  • Minchenko A, Leshchinsky I, Opentanova I et al (2002) Hypoxia inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277:6183–6187

    PubMed  CAS  Google Scholar 

  • Mindermann T, Gratzl O (1998) Interhemispheric pressure gradients in severe head trauma in humans. Acta Neurochir Suppl 71:56–58

    PubMed  CAS  Google Scholar 

  • Mirski AM, Denchev ID, Schnitzer SM et al (2000) Comparison between hypertonic saline and mannitol in the reduction of elevated intracranial pressure in a rodent model of acute cerebral injury. J Neurosurg Anesthesiol 12:334–344

    PubMed  CAS  Google Scholar 

  • Mittlmeier T, Vollmar B, Menger MD et al (2003) Small volume hypertonic hydroxyethyl starch reduces acute microvascular dysfunction after closed soft-tissue trauma. J Bone Joint Surg Br 85:126–132

    PubMed  CAS  Google Scholar 

  • Monro A (1823) Observations of the structure and function of the nervous system. Creech and Johnson, Edinburgh, p 5

    Google Scholar 

  • Moon PF, Kramer GC (1995) Hypertonic saline/dextran resuscitation from hemorrhagic shock induces transient acidosis. Crit Care Med 23:323–331

    PubMed  CAS  Google Scholar 

  • Moraine J-J, Berré J, Mélot C (2000) Is cerebral perfusion pressure a major determinant of cerebral blood flow during head elevation in comatose patients with severe intracranial lesions? J Neurosurg 92:606–614

    PubMed  CAS  Google Scholar 

  • Morgan P, Ward B (1970) Hyperventilation and changes in the electroencephalogram and electroretinogram. Neurology 20:1009–1014

    PubMed  CAS  Google Scholar 

  • Muizelaar JP, Wei EP, Kontos HA et al (1983) Mannitol causes compensatory cerebral vasoconstriction and vasodilatation in response to blood viscosity changes J Neurosurg 59:822–828

    PubMed  CAS  Google Scholar 

  • Muizelaar JP, Lutz HA, Becker DP (1984) Effect of mannitol on ICP and CBF and correlation with pressure autoregulation in severely head-injured patients. J Neurosurg 61:700–706

    PubMed  CAS  Google Scholar 

  • Müller-Schweinitzer E, Rosenthaler J (1987) Dihydroergotamine: pharmacodynamics, and mechanism of venoconstrictor action in beagle dogs. J Cardiovasc Pharmacol 9:686–693

    PubMed  Google Scholar 

  • Munari C, Calbucci F (1979) Correlations between intracranial pressure (ICP) and EEG changes during traumatic coma. Rev Electroencephalogr Neurophysiol Clin 9:185–193

    PubMed  CAS  Google Scholar 

  • Nakamura T, Miyamoto O, Sumitani K et al (2003) Do rapid systemic changes of brain temperature have an influence on the brain? Acta Neurochir 145:301–307

    CAS  Google Scholar 

  • Nath F, Galbraith S (1986) The effect of mannitol on cerebral white matter water content. J Neurosurg 65:41–43

    PubMed  CAS  Google Scholar 

  • Nekludov M, Bellander BM, Mure M (2006) Oxygenation and cerebral perfusion pressure improved in the prone position. Acta Anesthesiol Scand 50:932–936

    CAS  Google Scholar 

  • Ng I, Lim J, Wong HB (2004) Effects of head posture on cerebral haemodynamics: its influence on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosurgery 54:593–598

    PubMed  Google Scholar 

  • Nilsson F, Messeter K, Grände PO et al (1995) Effects of dihydroergotamine on cerebral circulation during experimental intracranial hypertension. Acta Anaesthesiol Scand 39:916–921

    PubMed  CAS  Google Scholar 

  • Nolte D, Bayer M, Lehr HA et al (1992) Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 263:H1411–H1416

    PubMed  CAS  Google Scholar 

  • Noppens RR, Christ M, Brambrink AM et al (2006) An early bolus of hypertonic saline hydroxyethyl starch improves long-term outcome after global cerebral ischemia. Crit Care Med 34:2194–2200

    PubMed  CAS  Google Scholar 

  • Nordström C-H, Rehncrona S (1979) Reduction of cerebral blood flow and oxygen consumption with a combination of barbiturate anesthesia and induced hypothermia in the rat. Acta Anaesthesiol Scand 22:7–12

    Google Scholar 

  • Nornes H, Magnäs B (1971) Supratentorial epidural pressure recording during posterior fossa surgery. J Neurosurg 35:541–549

    PubMed  CAS  Google Scholar 

  • Norris JW (1976) Steroid therapy in acute cerebral infarction. Arch Neurol 33:69–71

    PubMed  CAS  Google Scholar 

  • North JB, Reilly PL, Gorman D et al (1993) The effect of hypoxia on intracranial pressure and cerebral blood flow. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 238–243

    Google Scholar 

  • Nunn JF (1987) Applied respiratory physiology, 3rd edn. Butterworth, Cambridge, UK

    Google Scholar 

  • Obrist WD, Gennarelli TA, Segewa H et al (1979) Relation of cerebral blood flow to neurological status and outcome in head-injured patients. J Neurosurg 51:292–300

    PubMed  CAS  Google Scholar 

  • Obrist WD, Langfitt TW, Jaggi JL et al (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg 61:241–253

    PubMed  CAS  Google Scholar 

  • Oertel M, Kelly DF, Lee JH et al (2002) Is CPP therapy beneficial for all patients with high ICP? Acta Neurochir Suppl 81:67–68

    PubMed  CAS  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA et al (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13:1441–1453

    PubMed  CAS  Google Scholar 

  • Olafsson S, Gottstein J, Blei AT (1995) Brain edema and intracranial hypertension in rats after total hepatectomy. Gastroenterology 108:1097–1103

    PubMed  CAS  Google Scholar 

  • Olesen J, Skinhøj E (1972) Effects of ergot ankaloids (Hydergine) on cerebral haemodynamics in man. Acta Pharmacol 31:75–85

    CAS  Google Scholar 

  • Onar M, Arik Z (1997) The evaluation of mannitol therapy in acute ischemic stroke patients by serial somatosensory evoked potentials. Electromyogr Clin Neurophysiol 37:213–218

    PubMed  CAS  Google Scholar 

  • Ott P, Larsen FS (2004) Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 44:185–198

    PubMed  CAS  Google Scholar 

  • Paczynski RP, He YY, Diringer MN et al (1997) Multiple-dose mannitol reduces brain water content in a rat model of cortical infarction. Stroke 28:1437–1443

    PubMed  CAS  Google Scholar 

  • Palvölgyi R (1969) Regional cerebral blood flow in patients with intracranial tumours. J Neurosurg 31:149–163

    PubMed  Google Scholar 

  • Pappius HM, McCann WP (1969) Effects of steroids on cerebral edema in cats. Arch Neurol 20:207–216

    PubMed  CAS  Google Scholar 

  • Pasternak JJ, McGregor DG, Lanier WL (2004) Effect of single-dose dexamethasone on blood glucose concentration in patients undergoing craniotomy. J Neurosurg Anesthesiol 16:122–125

    PubMed  Google Scholar 

  • Patel J, Roberts I, Azzopardi D et al (2000) Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatr Res 47:36–42

    PubMed  CAS  Google Scholar 

  • Paulson OB (1970) Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery. Neurology 20:63–77

    PubMed  CAS  Google Scholar 

  • Pena H, Gaines C, Suess D et al (1982) Effect of mannitol on experimental focal ischaemia in awake monkeys. Neurosurgery 11:477–481

    PubMed  CAS  Google Scholar 

  • Penn RD, Lee MC, Linninger AA et al (2005) Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg 102:1069–1075

    PubMed  Google Scholar 

  • Phelps ME, Grubb RL, Ter-Pogosian MM (1973) Correlation between Pa CO2 and regional cerebral blood volume by x-ray fluorescence. J Appl Physiol 35:274–280

    PubMed  CAS  Google Scholar 

  • Pichard JD, MacKenzie ET (1973) Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation to carbon dioxide. Nat New Biol 245:187

    Google Scholar 

  • Pierce EC, Lambertsen CJ, Deutsch S et al (1962) Cerebral circulation and metabolism during thiopental anesthesia and hyper-ventilation in man. J Clin Invest 41:1664–1671

    PubMed  CAS  Google Scholar 

  • Piper I, Spiegelberg A, Whittle I et al (1999) A comparative study of the Spiegelberg compliance devices with a manual volume-injection method: a clinical evaluation in patients with hydrocephalus. Br J Neurosurg 13:581–586

    PubMed  CAS  Google Scholar 

  • Pistolese GR, Faraglia V, Agnoli A et al (1972) Cerebral hemispheric “counter-steal” phenomenon during hyperventilation in cerebrovascular diseases. Stroke 3:456–461

    PubMed  CAS  Google Scholar 

  • Poca MA, Sahuquillo J, Topczewski T et al (2006) Posture-induced changes in intracranial pressure: a comparative study in patients with and without a cerebrospinal fluid block at the craniovertebral junction. Neurosurgery 58:899–906

    PubMed  Google Scholar 

  • Polderman KH, van de Kraats G, Dixon JM et al (2003) Increases in spinal fluid osmolarity induced by mannitol. Crit Care Med 31:584–590

    PubMed  CAS  Google Scholar 

  • Pollay M, Fullenwider C, Roberts A et al (1983) Effect of mannitol and furosemide on blood-brain osmotic gradient and intracranial pressure. J Neurosurg 59:945–950

    PubMed  CAS  Google Scholar 

  • Poon WS, Ng SC, Chan MT et al (2002) Neurochemical changes in ventilated head-injured patients with cerebral perfusion pressure treatment failure. Acta Neurochir 81:335–338

    CAS  Google Scholar 

  • Portella G, Cormio M, Cierio G (2002) Continuous cerebral compliance monitoring in severe head injury. Its relationship with intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl 81:173–175

    PubMed  CAS  Google Scholar 

  • Procaccio F, Menasce G, Sacchi L et al (1993) Ischemic insult due to manual ventilation in head injured patients with intracranial hypertension. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 583–588

    Google Scholar 

  • Prough DS, Johnson JC, Poole GV et al (1985) Effects on intracranial pressure of resuscitation from hemorrhagic shock with hypertonic saline versus lactated Ringer’s solution. Crit Care Med 13:407–410

    PubMed  CAS  Google Scholar 

  • Prough DS, Withney JM, Taylor CL et al (1991) Regional cerebral blood flow following resuscitation from hemorrhagic shock with hypertonic saline. Anesthesiology 75:319–327

    PubMed  CAS  Google Scholar 

  • Quandt CM, Reyes RA (1984) Pharmacologic management of acute intracranial hypertension. Drug Intell Clin Pharm 18:105–112

    PubMed  CAS  Google Scholar 

  • Qureshi AI, Suarez JI (2000) Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med 28:3301–3313

    PubMed  CAS  Google Scholar 

  • Qureshi AI, Wilson DA, Traystman RJ (1999) Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: Comparison between mannitol and hypertonic saline. Neurosurgery 44:1055–1064

    PubMed  CAS  Google Scholar 

  • Qureshi AI, Wilson DA, Traystman RJ (2002) Treatment of transtentorial herniation unresponsive to hyperventilation using hypertonic saline in dogs: effect on cerebral blood flow and metabolism. J Neurosurg Anesthesiol 14:22–30

    PubMed  Google Scholar 

  • Raghavan M, Marik PE (2006) Therapy of intracranial hypertension in patients with fulminant hepatic failure. Neurocrit Care 4:179–189

    PubMed  CAS  Google Scholar 

  • Raichle ME, Posner JB, Plum F (1970) Cerebral blood flow during and after hyperventilation. Arch Neurol 23:394–403

    PubMed  CAS  Google Scholar 

  • Raphael JH, Chotai R (1994) Effects of cervical collar on cerebrospinal fluid pressure. Anaesthesia 49:437–439

    PubMed  CAS  Google Scholar 

  • Rasmussen M, Tankisi A, Cold GE (2004a) The effects of indomethacin on intracranial pressure and cerebral haemodynamics in patients undergoing craniotomy: a randomized prospective study. Anesthesia 59:229–236

    CAS  Google Scholar 

  • Rasmussen M, Østergaard L, Juul N et al (2004b) Do indomethacin and propofol cause cerebral ischemic damage? Anesthesiology 101:872–878

    CAS  Google Scholar 

  • Rasmussen M, Bundgaard H, Cold GE (2004c) Craniotomy for supratentorial brain tumours: risk factors for brain swelling after opening of dura mater. J Neurosurg 101:621–626

    Google Scholar 

  • Rasmussen M, Upton RN, Grant C et al (2006) The effects of indomethacin on intracranial pressure and cerebral haemodynamics during isoflurane or propofol anesthesia in sheep with intracranial hypertension. Anesth Analg 102:1823–1829

    PubMed  CAS  Google Scholar 

  • Ravussin P, Archer DP, Tyler JL et al (1986a) Effects of rapid mannitol infusion on cerebral blood volume. J Neurosurg 64:104–113

    CAS  Google Scholar 

  • Ravussin P, Chiolero R, Buchser E et al (1986b) CSF pressure changes following mannitol in patients undergoing craniotomy. Anesthesiology 65:A303

    Google Scholar 

  • Reivich M, Cohen PJ, Greenbaum L (1966) Alterations in the electroencephalogram of awake man produced by hyperventilation: effects of 100% oxygen at 3 atmospheres (absolute) pressure. Neurology 16:304

    Google Scholar 

  • Renaudin J, Fewer D, Wilson CB et al (1973) Dose dependency of Decadron in patients with partially excised brain tumors. J Neurosurg 39:302–305

    PubMed  CAS  Google Scholar 

  • Reulen HJ, Graham R, Spatz M et al (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic edema. J Neurosurg 46:24–35

    PubMed  CAS  Google Scholar 

  • Risberg J, Lundberg N, Ingvar D (1969) Regional cerebral blood volume during acute transient rises of the intracranial pressure (plateau waves). J Neurosurg 31:303–310

    PubMed  CAS  Google Scholar 

  • Roberts PA, Pollay M, Engles C et al (1987) Effect on intracranial pressure of furosemide combined with varying doses and administration rates of mannitol. J Neurosurg 66:440–446

    PubMed  CAS  Google Scholar 

  • Rockoff MA, Marchall LF, Shapiro HM (1979) High-dose barbiturate therapy in humans: a clinical review of 60 patients. Ann Neurol 6:194–199

    PubMed  CAS  Google Scholar 

  • Rosa G, Orfie P, Sanfilippo M et al (1986) The effects of atracurium besylate (Tracium) on intracranial pressure and cerebral perfusion pressure. Anesth Analg 65:381–384

    PubMed  CAS  Google Scholar 

  • Rosenthal RJ, Hiatt JR, Phillips EH et al (1997) Intracranial pressure. Effect of pneumoperitoneum in a large-animal model. Surg Endosc 11:376–380

    PubMed  CAS  Google Scholar 

  • Rosenthal RJ, Friedman RL, Chidambaram A et al (1998) Effects of hyperventilation and hypoventilation on Pa CO2 and intracranial pressure during acute elevations of intraabdominal pressure with CO2 pneumoperitoneum: large animal observations. J Am Coll Surg 187:32–38

    PubMed  CAS  Google Scholar 

  • Rosenwasser RH, Kleiner LI, Krzeminski JP et al (1989) Intracranial pressure monitoring in the posterior fossa: a preliminary report. J Neurosurg 71:503–505

    PubMed  CAS  Google Scholar 

  • Rosner MJ, Becker DP (1984) Origin and evolution of plateau waves, experimental observations and a theoretical model. J Neurosurg 60:312–324

    PubMed  CAS  Google Scholar 

  • Rosner MJ, Coley IB (1986) Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg 65:636–641

    PubMed  CAS  Google Scholar 

  • Rosner MJ, Coley I (1987) Cerebral perfusion pressure: a haemodynamic mechanism of mannitol and postmannitol hemogram. Neurosurgery 21:147–156

    PubMed  CAS  Google Scholar 

  • Rosomoff HL (1963) Distribution of intracranial contents with controlled hyperventilation: implications of neuroanaesthesia. Anesthesiology 24:640–645

    PubMed  CAS  Google Scholar 

  • Roux FX, Raggueneau JL, Geoerge B et al (1984) Pression epidurale locoregionale et pression intra-cranienne differentielle: interet de leur monitorage chez des patients porters dúe lesion intracerebrale unilaterale. Agressologie 25:559–561

    PubMed  CAS  Google Scholar 

  • Rudehill A, Lagerkranser M, Lindquist C et al (1983) Effects of mannitol on blood volume and central haemodynamics in patients undergoing cerebral aneurysm surgery. Anesth Analg 62:875–880

    PubMed  CAS  Google Scholar 

  • Ruta TS, Drummond JC, Cole DJ (1993) The effect of acute hypocapnia on local cerebral blood flow during middle cerebral artery occlusion in isoflurane anesthetized rats. Anesthesiology 78:134–140

    PubMed  CAS  Google Scholar 

  • Ryding E, Asgeirsson B, Bertman L et al (1990) Dihydroergotamine treatment of increased ICP following severe head injury. 5th Nordic CBF symposium, Lund 27

    Google Scholar 

  • Sahuquillo J, Poca M-A, Arribas M et al (1999) Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important. J Neurosurg 90:16–26

    PubMed  CAS  Google Scholar 

  • Sakabe T, Siesjö BK (1979) The effect of indomethacin on blood flow-metabolism couple in the brain under normal, hypercapnic and hypoxic conditions. Acta Physiol Scand 107:283–284

    PubMed  CAS  Google Scholar 

  • Sasaki T, Nakagomi T, Kirino et al (1988) Indomethacin ameliorates ischemic neuronal damage in the gerbil hippocampal CA 1 sector. Stroke 19:1399–1403

    PubMed  CAS  Google Scholar 

  • Saul TG, Ducker TB (1982) Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg 56:498–503

    PubMed  CAS  Google Scholar 

  • Scale TM, Meltz S, Yelon J et al (1994) Resuscitation of multiple trauma and head injury: role of crystalloid fluids and inotropes. Crit Care Med 22:1610–1615

    Google Scholar 

  • Schaller B, Graf R (2005) Different compartments of intracranial pressure and its relationship to cerebral blood flow. J Trauma 59:1521–1531

    PubMed  CAS  Google Scholar 

  • Scheinberg P, Stead EA Jr (1949) The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effect of tilting and anxiety. J Clin Invest 28:1163–1171

    PubMed  CAS  Google Scholar 

  • Schell RM, Applegate RL, Cole DJ (1996) Salt, starch and water on the brain. Points of view. J Neurosurg Anesthesiol 8:178–182

    PubMed  CAS  Google Scholar 

  • Scheller MS, Zornow MH, Oh YS (1991) A comparison of the cerebral and haemodynamic effects of mannitol and hypertonic saline in a rabbit model of acute cryogenic brain injury. J Neurosurg Anesthesiol 3:291–296

    PubMed  CAS  Google Scholar 

  • Schenker S, McCandless DW, Brophy E et al (1967) Studies on the intracerebral toxicity of ammonia. J Clin Invest 46:838–848

    PubMed  CAS  Google Scholar 

  • Schettini A, Stahurski B, Young HF (1982) Osmotic and osmotic-loop diuresis in brain surgery. Effects on plasma and CSF electrolytes and ion excretion. J Neurosurg 56:679–684

    PubMed  CAS  Google Scholar 

  • Schierhout G, Robert I (2000) Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev 2:CD001049

    PubMed  Google Scholar 

  • Schmoker JD, Zhuang J, Shackford SR (1991) Hypertonic fluid resuscitation improves cerebral oxygen delivery and reduces intracranial pressure after hemorrhagic shock. J Trauma 31:1607–1613

    PubMed  CAS  Google Scholar 

  • Schneider GH, von Helden GH, Franke R et al (1993) Influence of body position and cerebral perfusion pressure. Acta Neurochir 59:107–112

    CAS  Google Scholar 

  • Schneider GH, Sarrafzadeh AS, Kiening KL et al (1998) Influence of hyperventilation on brain tissue: P O2, PaCO2, and pH in patients with intracranial hypertension. Acta Neurochir Suppl 71:62–65

    PubMed  CAS  Google Scholar 

  • Schreiber SJ, Lambert UKW, Doepp F et al (2002) Effects of prolonged head-down tilt on internal jugular vein cross-sectional area. Br J Anaesth 89:769–771

    PubMed  CAS  Google Scholar 

  • Schuier FJ, Hossmann KA (1980) Experimental brain infarct in cats. II: Ischemic brain oedema. Stroke 11:593–601

    PubMed  CAS  Google Scholar 

  • Schumann P, Touzani O, Young AR et al (1996) Effects of indomethacin on cerebral blood flow and oxygen metabolism: a positron emission tomographic investigation in the anaesthetized baboon. Neurosci Lett 220:137–141

    PubMed  Google Scholar 

  • Schürer L, Dautermann C, Härtl R et al (1992) Treatment of hemorrhagic hypotension with hypertonic/hyperoncotic solutions: effects on regional cerebral blood flow and brain surface oxygen tension. Eur Surg Res 24:1–12

    PubMed  Google Scholar 

  • Schwarz S, Bertram M, Aschoff A et al (1999) Indomethacin for brain edema following stroke. Cardiovasc Dis 9:248–250

    CAS  Google Scholar 

  • Sedzimir CB (1959) Therapeutic hypothermia in cases of head injury. J Neurosurg 16:407–414

    PubMed  CAS  Google Scholar 

  • Seki H, Ogawa A, Yoshimoto T, Suzuki J (1981) Effect of mannitol on rCBF in canine thalamic ischemia. An experimental study. Brain Nerve (Tokyo) 33:1101–1105

    CAS  Google Scholar 

  • Sgouros S, Goldin JH, Hockley AD et al (1999) Intracranial volume change in childhood. J Neurosurg 91:610–616

    PubMed  CAS  Google Scholar 

  • Shackford SR, Zhuang J, Schmoker J (1992) Intravenous fluid tonicity: effect on intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in focal brain injury. J Neurosurg 76:91–98

    PubMed  CAS  Google Scholar 

  • Shapira Y, Davidson E, Weidenfeld Y et al (1988) Dexamethasone and indomethacin do not affect brain edema following head injury in rats. J Cereb Blood Flow Metab 8:395–402

    PubMed  CAS  Google Scholar 

  • Shapiro K, Marmarou A (1989) Mechanisms of intracranial hypertension in children. In: McLaurin R, Venes J, Schut L et al (eds) Pediatric neurosurgery. Saunders, Philadelphia, p 338

    Google Scholar 

  • Shapiro HM, Galindo A, Wyte SR et al (1973) Rapid intraoperative reduction of intracranial pressure with thiopental. Br J Anaesth 45:1057–1061

    PubMed  CAS  Google Scholar 

  • Shapiro HM, Wyte SR, Loeser J (1974) Barbiturate augmented hypothermia for reduction of persistent intracranial hypertension. J Neurosurg 40:90–100

    PubMed  CAS  Google Scholar 

  • Shenkin HA, Goluboff B, Haft H (1962) The use of mannitol for the reduction of intracranial pressure in intracranial surgery. J Neurosurg 19:897–901

    PubMed  CAS  Google Scholar 

  • Shigeno S, Fritschka E, Shigeno T et al (1985) Effects of indomethacin on rCBF during and after focal cerebral ischemia in the cat. Stroke 16:235–242

    PubMed  CAS  Google Scholar 

  • Shima K, Marmarou A (1993) Effect of posttraumatic hypoventilation. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 476–478

    Google Scholar 

  • Shiozaki T, Sugimoto H, Taneda M et al (1993) Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 79:363–368

    PubMed  CAS  Google Scholar 

  • Shirane R, Weinstein PR (1992) Effect of mannitol on local cerebral blood flow after temporary complete cerebral ischemia in rats. J Neurosurg 76:486–492

    PubMed  CAS  Google Scholar 

  • Shohami E, Shapira Y, Sidi A et al (1987) Head injury induces increased prostaglandin synthesis in rat brain. J Cereb Blood Flow Metab 7:58–63

    PubMed  CAS  Google Scholar 

  • Sidi A, Cotev S, Hadani M et al (1983) Long-term barbiturate infusion to reduce intracranial pressure. Crit Care Med 11:478–481

    PubMed  CAS  Google Scholar 

  • Skippen P, Sear M, Poskitt K et al (1997) Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med 25:1402–1409

    PubMed  CAS  Google Scholar 

  • Sklar FH, Beyer CW, Ramanathan M et al (1980) The effects of furosemide on CSF dynamics in patients with pseudo tumor cerebri. In: Shulman K, Marmarou A, Miller JD, Becker DP, Hochwald GM, Brock M (eds) Intracranial pressure IV. Springer, Berlin, pp 660–663

    Google Scholar 

  • Slocum HC, Hayes GW, Laezman BL (1961) Ventilator technique of anesthesia for neuroanaesthesia. Anesthesiology 22:143–145

    Google Scholar 

  • Smedena RJ, Gaab MR, Hesiler HE (1993) A comparison study between mannitol and glycerol therapy in reducing intracranial pressure. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 605–608

    Google Scholar 

  • Soloway M, Nadel W, Albin MS et al (1968) The effect of hyperventilation on subsequent cerebral infarction. Anesthesiology 29:975–980

    PubMed  CAS  Google Scholar 

  • Soloway M, Moriarty G, Fraser JG et al (1971) Effect of delayed hyperventilation on experimental cerebral infarction. Neurology 21:479–485

    PubMed  CAS  Google Scholar 

  • Steen PA, Milde JH, Michenfelder JD (1979) No barbiturate protection in a dog model of complete cerebral ischaemia Ann Neurol 5:343–349

    PubMed  CAS  Google Scholar 

  • Stephan H, Sonntag H, Schenk HD et al (1987) Einfluss von disoprivan (Propofol) auf die Durchblutung und Sauerstoffverbrauch des Gehirns and die CO2 Reaktivität der Hirngefässe beim Menschen. Anesthetist 36:60–65

    CAS  Google Scholar 

  • Stewart L, Bullock R, Rafferty C et al (1994) Propofol sedation in severe head injury fails to control high ICP but reduces brain metabolism. Acta Neurochir Suppl 60:544–546

    CAS  Google Scholar 

  • St Lawrence KS, Ye FQ, Lewis BK et al (2003) Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magn Reson Med 50:99–106

    PubMed  CAS  Google Scholar 

  • Stocchetti N, Mattioli C, Paparella A et al (1993) Bedside assessment of CO2 reactivity in head injury: changes in CBF estimated by changes in ICP and cerebral extraction of oxygen (abstract). J Neurotrauma 10(suppl):187

    Google Scholar 

  • Stocchetti N, Paparella A, Bridelli F et al (1994) Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery 34:38–43

    PubMed  CAS  Google Scholar 

  • Stocchetti N, Parma A, Songa V et al (2000) Early translaryngeal tracheostomy in patients with severe brain damage. Intensive Care Med 26:1101–1107

    PubMed  CAS  Google Scholar 

  • Stocchetti N, Maas AIR, Chieregato A et al (2005) Hyperventilation in head injury. Chest 127:1812–1827

    PubMed  Google Scholar 

  • Stringer WA, Hasso AN, Thompson JR et al (1993) Hyperventilation-induced cerebral ischemia in patients with acute brain lesions: demonstrated by xenon-enhanced CT. AJNR Am J Neuroradiol 14:475–484

    PubMed  CAS  Google Scholar 

  • Stullken AH, Milde JH, Michenfelder JD et al (1977) The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane and thiopental. Anesthesiology 46:28–34

    PubMed  CAS  Google Scholar 

  • Sutherland G, Lesiuk H, Bose R et al (1988) Effect of mannitol, nimodipine, and indomethacin singly or in combination on cerebral ischaemia in rats. Stroke 19:571–578

    PubMed  CAS  Google Scholar 

  • Suzuka T, Mabe H, Nagai H (1989) Role of arachidonic acid metabolites on development of ischemic cerebral edema in rat middle cerebral artery occlusion. J Cereb Blood Flow Metab 9(suppl 1):S89

    Google Scholar 

  • Symon L (1970) Regional cerebrovascular responses to acute ischaemia in normocapnia and hypercapnia. J Neurol Neurosurg Psychiatry 33:756–762

    PubMed  CAS  Google Scholar 

  • Symon L, Pasztor E, Branston NM et al (1974) Effect of supratentorial space-occupying lesions on regional intracranial pressure and local cerebral blood flow: an experimental study in baboons. J Neurol Neurosurg Psychiatry 37:617–626

    PubMed  CAS  Google Scholar 

  • Symon L, Branston NM, Chikovani O (1979) Ischemic brain oedema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 and 2 hours. Stroke 10:184–191

    PubMed  CAS  Google Scholar 

  • Takagi H, Tanaka M, Ohwada T et al (1993) Pharmacokinetic analysis of mannitol in relation to the decrease of ICP. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 596–600

    Google Scholar 

  • Takahashi H, Koehler RC, Brusilow SW et al (1990) Glutamine synthetase inhibition prevents cerebral edema during hyperammonemia. Acta Neurochir Suppl 51:346–347

    CAS  Google Scholar 

  • Tanaka A, Tomonaga M (1987) Effect of mannitol on cerebral blood flow and microcirculation during experimental middle cerebral artery occlusion. Surg Neurol 28: 189–195

    PubMed  CAS  Google Scholar 

  • Tankisi A, Cold GE (2007) Optimal reverse Trendelenburg position in patients undergoing craniotomy for cerebral tumors. J Neurosurg 106:239–244

    PubMed  Google Scholar 

  • Tankisi A, Rasmussen M, Juul N et al (2002) The effects of 10° reverse Trendelenburg position on ICP and CPP in prone positioned patients subjected to craniotomy for occipital or cerebellar tumours. Acta Neurochir 144:665–670

    CAS  Google Scholar 

  • Tankisi A, Rasmussen M, Juul N et al (2006) The effects of 10° reverse Trendelenburg position on subdural intracranial pressure and cerebral perfusion pressure in patients subjected to craniotomy for cerebral aneurysm. J Neurosurg Anesthesiol 18:11–17

    PubMed  Google Scholar 

  • The Brain Trauma Foundation (2000) The American Association of Neurological Surgeons. The Joint Section of Neurotrauma and Critical Care. J Neurotrauma 17

    Google Scholar 

  • The Brain Trauma Foundation (2007) The American Association of Neurological Surgeons, AANS and CNS the Joint Section of Neurotrauma and Critical Care Guidelines for the management of severe traumatic brain injury. J Neurotrauma 24(suppl 1)

    Google Scholar 

  • Thelandersson A, Cider Å, Nellgård B (2006) Prone position in mechanically ventilated patients with reduced intracranial compliance. Acta Anaesthesiol Scand 50:937–941

    PubMed  CAS  Google Scholar 

  • Thenuwara K, Todd MM, Brian JE (2002) Effect of mannitol and furosemide on plasma and brain water. Anesthesiology 96:416–421

    PubMed  CAS  Google Scholar 

  • Thilmann J, Zeumer H (1974) Untersuchungen zur Behandlung des Hirnödems mit hohen Dosen Furosemid. Dtsch Med Wochenschr 99:932–935

    Google Scholar 

  • Thomale UW, Griebenow M, Kroppenstedt M et al (2004) Small volume resuscitation with HyperHaes improves pericontusional perfusion and reduces lesion volume following controlled cortical impact injury in rats. J Neurotrauma 21:1737–1746

    PubMed  Google Scholar 

  • Tindall GT, Craddock A, Greenfield JC (1967) Effects of the sitting position on blood flow in the internal carotid artery of man during general anaesthesia. J Neurosurg 26: 383–389

    PubMed  CAS  Google Scholar 

  • Todd MM, Tommasino C, Moore S (1985) Cerebral effects of isovolemic hemodilution with a hypertonic solution. J Neurosurg 63:944–948

    PubMed  CAS  Google Scholar 

  • Todd NV, Picozzi P, Crockard A et al (1986) Reperfusion after cerebral ischemia: influence of duration of ischemia. Stroke 17:460–466

    PubMed  CAS  Google Scholar 

  • Tofteng F, Larsen FS (2004) The effect of indomethacin on intracranial pressure, cerebral perfusion and extracellular lactate and glutamate concentrations in patients with fulminant hepatic failure. J Cereb Blood Flow Metab 24:798–804

    PubMed  CAS  Google Scholar 

  • Troup H (1967) Intraventricular pressure in patients with severe brain injuries. J Trauma 7:875–883

    Google Scholar 

  • Tsuda Y, Kitadai M, Hatanaka Y et al (1998) Effects of mannitol and glycerol on cerebral energy metabolism in gerbils. Acta Neurol Scand 98:36–40

    PubMed  CAS  Google Scholar 

  • Tsuji T, Chiba S (1986) Responses of isolated canine and simian basilar arteries to thiopentone by a newly designed pharmacological method for measuring vascular responsiveness. Acta Neurochir 80:57–61

    CAS  Google Scholar 

  • Tsuji T, Chiba S (1987) Mechanism of vascular responsiveness to barbiturates in isolated and perfused canine basilar arteries. Neurosurgery 21:161–166

    PubMed  CAS  Google Scholar 

  • Tulleken CA, von Dieven A, Mollevanger WJ et al (1978) Differential intracranial pressure gradients created by expanding extradural temporal mass lesion. J Neurosurg 86:505–510

    Google Scholar 

  • Uihlein A, MacCarty CS, Michenfelder JD et al (1966) Deep hypothermia and surgical treatment of intracranial aneurysms. JAMA 195:639–641

    PubMed  CAS  Google Scholar 

  • Ulatowski JA, Oja JM, Suarez JI et al (1999) In vivo determination of absolute cerebral blood volume using haemoglobin as a natural contrast agent: an MRI study using altered arterial carbon dioxide tension. J Cereb Blood Flow Metab 19:809–817

    PubMed  CAS  Google Scholar 

  • Unterberg AW, Kiening KL, Hartl R et al (1997) Multimodal monitoring in patients with head injury: evaluation of the effects of treatment on cerebral oxygenation. J Trauma 42:S32–S37

    PubMed  CAS  Google Scholar 

  • Urlesberger B, Muller W, Ritschi E et al (1991) The influence of head position on the intracranial pressure in preterm infants with post hemorrhagic hydrocephalus. Childs Nerv Syst 7:85–87

    PubMed  CAS  Google Scholar 

  • Valentin A, Lang T, Karnik R et al (2003) Intracranial pressure monitoring and case mix-adjusted mortality in intracranial haemorrhage. Crit Care Med 31:1539–1542

    PubMed  Google Scholar 

  • van Hulst RA, Hassan D, Lachmann B (2002) Intracranial pressure, brain PaCO2, P O2, and pH during hypo- and hyperventilation at constant mean airway pressure in pigs. Intensive Care Med 28:68–73

    PubMed  Google Scholar 

  • van Hulst RA, Lameris TW, Haitsma JJ et al (2004) Brain glucose and lactate levels during ventilator-induced hypo- and hypercapnia. Clin Physiol Funct Imaging 24:243–248

    PubMed  Google Scholar 

  • Vannucci C, Brucklacher RM, Vannucci SJ (1997) Effect of carbon dioxide on cerebral metabolism during hypoxia-ischemia in the immature rat. Pediatr Res 42:24–29

    PubMed  CAS  Google Scholar 

  • Van Roost D, Hartmann A, Quade G (2001) Changes of cerebral blood flow following dexamethasone treatment in brain tumour patients. A Xe/CT study. Acta Neurochir 143:37–44

    Google Scholar 

  • van Santbrink H, Maas AI, Avezaat CJ (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38:21–31

    PubMed  Google Scholar 

  • Vapalahti M, Troupp H, Heiskanen O (1969) Extremely severe brain injuries treated with hyperventilation and ventricular drainage. In: Brock M, Fieschi C, Ingvar DH, Lassen NA, Schurmann K (eds) Cerebral blood flow. Springer, Berlin, pp 266–267

    Google Scholar 

  • Vassar MJ, Fischer RP, O’Brien PE (1993) A multicenter trial for resuscitation of injured patients with 7.5% sodium chloride. Arch Surg 128:1003–1013

    PubMed  CAS  Google Scholar 

  • Videtta W, Villarejo F, Cohen M et al (2002) Effects of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl 81:93–97

    PubMed  CAS  Google Scholar 

  • Voldby B, Enevoldsen EM, Jensen FT (1985) Regional cerebral blood flow, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg 62:48–58

    PubMed  CAS  Google Scholar 

  • Vollmar B, Lang G, Menger MD et al (1994) Hypertonic hydroxyethyl starch restores hepatic microvascular perfusion in hemorrhagic shock. Am J Physiol 266:H1927–H1934

    PubMed  CAS  Google Scholar 

  • von Berenberg P, Unterberg A, Schneider GH et al (1994) Treatment of traumatic brain edema by multiple doses of mannitol. Acta Neurochir 60:531–533

    Google Scholar 

  • von Helden A, Schneider GH, Unterberg A et al (1993) Monitoring of jugular venous saturation in comatose patients with subarachnoid haemorrhage and intracerebral haematomas. Acta Neurochir Suppl 59:102–106

    Google Scholar 

  • Ward JD, Becker DP, Miller JD et al (1985) Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg 62:383–388

    PubMed  CAS  Google Scholar 

  • Waschke KF, Albrecht DM, van Ackern K et al (1996) Coupling between local cerebral blood flow and metabolism after hypertonic/hyperoncotic fluid resuscitation from hemorrhage in conscious rats. Analg Anesth 82:52–60

    CAS  Google Scholar 

  • Wass CT, Lanier WL (1996) Glucose modulation of ischemic brain injury: review and clinical recommendations. Mayo Clin Proc 71:801–812

    PubMed  CAS  Google Scholar 

  • Wasserman K (1994) Coupling of external to cellular respiration during exercise: the wisdom of the body revisited. Am J Physiol 266:E519–E539

    PubMed  CAS  Google Scholar 

  • Watanabe T, Yoshimoto T, Ogawa A et al (1979) The effect of mannitol in preserving the development of cerebral infarction. An electron microscopic investigation. Neurol Surg (Tokyo) 7:859–866

    CAS  Google Scholar 

  • Weaver DD, Winn HR, Jane JA (1982) Differential intracranial pressure in patients with unilateral mass lesions. J Neurosurg 56:660–665

    PubMed  CAS  Google Scholar 

  • Weiss MH, Nulsen FE (1970) The effect of glucocorticoids on CSF flow in dogs. J Neurosurg 32:452–458

    PubMed  CAS  Google Scholar 

  • Weiss KL, Wax MK, Haydon RC et al (1993) Intracranial pressure changes during bilateral radical neck dissections. Head Neck 15:546–552

    PubMed  CAS  Google Scholar 

  • Welch K (1980) Intracranial pressure in infants. J Neurosurg 52:693–699

    PubMed  CAS  Google Scholar 

  • Wennmalm Å, Eriksson S, Wahren J (1981) Effect of indomethacin on basal and carbon dioxide stimulated cerebral blood flow in man. Clin Phys 1:227–234

    CAS  Google Scholar 

  • White RJ (1972) Preservation of cerebral function during circulatory arrest and resuscitation: hypothermic protective considerations. Resuscitation 1:107–115

    PubMed  CAS  Google Scholar 

  • White RJ, Likavec MJ (1992) The diagnosis and initial management of head injury. N Engl J Med 327:1507–1511

    PubMed  CAS  Google Scholar 

  • White RJ, Albin MS, Verdura J et al (1967) Differential extracorporeal hypothermic perfusion of and circulatory arrest to the human brain. Med Res Engineering 6:18–24

    CAS  Google Scholar 

  • Whitley JM, Prough DS, Lamb AK et al (1988) Regional cerebral blood flow following resuscitation from hemorrhagic shock in dogs with a subdural mass. Anesthesiology 69(suppl A):539

    Google Scholar 

  • Whitley JM. Prough DS, Taylor CL et al (1991) Cerebrovascular effects of small volume resuscitation from hemorrhagic shock: comparison of hypertonic saline and concentrated hydroxyethyl starch in dogs. J Neurosurg Anesthesiol 3:47–55

    Google Scholar 

  • Williams A, Coyne SM (1993) Effects of neck position on intracranial pressure. Am J Crit Care 2:68–71

    PubMed  CAS  Google Scholar 

  • Wise BL, Chater N (1962) The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebrospinal-fluid pressure. J Neurosurg 19:1038–1043

    PubMed  CAS  Google Scholar 

  • Wisner DH, Schuster L, Quinn C (1990) Hypertonic saline resuscitation of head injury: effects on cerebral water content. J Trauma 30:75–78

    PubMed  CAS  Google Scholar 

  • Wolfla C, Luerssen TG, Bowman RM et al (1996) Brain tissue pressure gradients created by expanding frontal epidural mass lesion. J Neurosurg 84:642–647

    PubMed  CAS  Google Scholar 

  • Worthley IGL, Cooper DJ, Jones N (1988) Treatment of resistant intracranial hypertension with hypertonic saline. J Neurosurg 68:478–481

    PubMed  CAS  Google Scholar 

  • Yano M, Nishiyama H, Yokota H et al (1986) Effect of lidocaine on ICP response to endotracheal suctioning. Anesthesiology 64:651–653

    PubMed  CAS  Google Scholar 

  • Yano M, Ikeda Y, Kobayashi S et al (1987) Intracranial pressure in head-injured patients with various intracranial lesions is identical throughout the supratentorial intracranial compartment. Neurosurgery 21:688–692

    PubMed  CAS  Google Scholar 

  • Yau YH, Piper IR, Clutton RE et al (2000) Experimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor. Technical note. J Neurosurg 93:1072–1077

    PubMed  CAS  Google Scholar 

  • Yen MH, Lee SH (1987) Effects of cyclooxygenase and lipoxygenase inhibitors on cerebral edema induced by freezing lesions in rats. Eur J Pharmacol 144:369–373

    PubMed  CAS  Google Scholar 

  • Yoon BH, Romero R, Kim CJ et al (1997) High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol 177:406–411

    PubMed  CAS  Google Scholar 

  • Yoshida A, Shima T, Okada Y et al (1991) Effects of postural changes on epidural pressure in patients with serious intracranial lesions. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 433–436

    Google Scholar 

  • Yoshida A, Shima T, Okada Y et al (1993) Effects of postural changes on epidural pressure and cerebral perfusion pressure in patients with serious intracranial lesions. In: Avezaat CJJ, van Eijndhoven JHM, Maas AIR, Tans JTJ (eds) Intracranial pressure VIII. Springer, Berlin, pp 433–436

    Google Scholar 

  • Yoshihara M, Bandoh K, Marmarou A (1995) Cerebrovascular carbon dioxide reactivity assessed by intracranial pressure dynamics in severely head injured patients. J Neurosurg 82:386–393

    PubMed  CAS  Google Scholar 

  • Zornow MH (1996) Hypertonic saline as a safe and efficacious treatment of intracranial hypertension. J Neurosurg Anesthesiology 8:175–177

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolsen-Petersen, J., Dahl, B., Cold, G. (2008). Monitoring of Intracranial Pressure (ICP): A Review. In: Cold, G., Juul, N. (eds) Monitoring of Cerebral and Spinal Haemodynamics During Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77873-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77873-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77872-1

  • Online ISBN: 978-3-540-77873-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics