Skip to main content

Abstract

Vascular disease, mainly atherosclerosis, is a major cause of death and disability in the Western world. As a generalized process it involves nearly all vascular territories, and the incidence increases with age. Responsible for different severe clinical findings, it is also the major cause of cerebrovascular disease. In the CNS it is the main cause of stroke, which is fatal in about 40% of cases [1]. However, every year approximately 20 million people worldwide survive stroke, making it a major cause of disability as well. Many of the stroke survivors are left with significant permanent disability [2] that requires costly clinical care [3]. Although ischemia accounts for 80% of all strokes, in some instances it is caused by intracranial hemorrhage, usually secondary to rupture of an intracranial aneurysm or vascular malformations [4]. Atheromatous debris from focal atherosclerotic plaque, usually at the carotid bifurcation, is the most common identifiable cause of carotid artery stenosis [5], present in about 25% of all strokes [6]. In patients with significant stenoses (i.e., >70% luminal narrowing) there are a variety of therapeutic options, including carotid endarterectomy or carotid stenting [79].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    Article  PubMed  Google Scholar 

  2. Beers MHH, Porter RS (2003) The Merck manual of diagnosis and therapy, 18th edn. Merck Research Laboratories, Whitehouse Station

    Google Scholar 

  3. World Health Organization (2003) Cardiovascular disease fact file. World Health Organization, Geneva

    Google Scholar 

  4. Chang HS (2006) Simulation of the natural history of cerebral aneurysms based on data from the International Study of Unruptured Intracranial Aneurysms. J Neurosurg 104:188–194

    Article  PubMed  Google Scholar 

  5. Bots ML, Hoes AW, Hofman A, Witteman JCM, Grobbee DE (1999) Cross-sectionally assessed carotid intima-media thickness relates to long-term risk of stroke, coronary heart disease and death as estimated by available risk functions. J Intern Med 245:269–276

    Article  PubMed  CAS  Google Scholar 

  6. Hademenos GJ, Massoud TF (1997) Biophysical mechanisms of stroke. Stroke 28:2067–2077

    PubMed  CAS  Google Scholar 

  7. European Carotid Surgery Trialists’ Collaborative Group (1998) Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 351:1379–1387

    Article  Google Scholar 

  8. Barnett HJ, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, Rankin RN, Clagett GP, Hachinski VC, Sackett DL, Thorpe KE, Meldrum HE, Spence JD (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 339:1415–1425

    Article  PubMed  CAS  Google Scholar 

  9. Mayberg MR, Wilson SE, Yatsu F, Weiss DG, Messina L, Hershey LA, Colling C, Eskridge J, Deykin D, Winn HR (1991) Carotid endarterectomy and prevention of cerebral ischemia in symptomatic carotid stenosis. JAMA 266:3289–3294

    Article  PubMed  CAS  Google Scholar 

  10. Barth A, Arnold M, Mattle HP, Schroth G, Remonda L (2006) Contrast-enhanced 3-D MRA in decision making for carotid endarterectomy: a 6-year experience. Cerebrovasc Dis 21:393–400

    Article  PubMed  Google Scholar 

  11. Kaufmann TJ, Kallmes DF (2005) Utility of MRA and CTA in the evaluation of carotid occlusive disease. Semin Vasc Surg 18:75–82

    Article  PubMed  Google Scholar 

  12. U-Kim-Im JM, Trivedi Ra, Graves MJ et al (2004) Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology 27:1282–1290

    Google Scholar 

  13. Jewells V, Castillo M (2003) MR angiography of the extracranial circulation. Magn Reson Imaging Clin N Am 11:585–597

    Article  PubMed  Google Scholar 

  14. Beltramello A, Piovan E, Rosta L (1994) Double blind comparison of safety and efficaxo of iomeprol and iopamidol in carotid digital subtraction angiography. Eur J Radiol 18:S67–72

    Article  Google Scholar 

  15. Barth A, Arnold M, Mattle HP, Schroth G, Remonda L (2006) Contrast-enhance 3-D MRA in decision making for carotid endarterectomy: a 6-year experience. Cerebrovasc Dis 21:393–400

    Article  PubMed  Google Scholar 

  16. Nieman K, van der Lugt A, Pattynama PM, de Feyter PJ (2003) Noninvasive visualization of atherosderotic plaque with electron beam and multislice spial computed tomography. J Interv Cardiol 16:123–128

    Article  PubMed  Google Scholar 

  17. Adams WM, Laitt RD, Thorne J, Jackson A (1999) MRA visualization of cerebral aneurysms. Medica Mundi 43:2–9

    Google Scholar 

  18. Ozsarlak O, Van Goethem JW, Maes M, Parizel PM (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972

    Article  PubMed  Google Scholar 

  19. Wilkerson DK, Keller I, Mezrich R, Schroder WB, Sebok D, Gronlund-Jacobs J, Conway R, Zatina MA (1991) The comparative evaluation of three-dimensional magnetic resonance for carotid artery disease. J Vasc Surg 14:803–809

    Article  PubMed  CAS  Google Scholar 

  20. Chiesa R, Melissano G, Castellano R, Triulzi F, Anzalone N, Veglia F, Scotti G, Grossi A (1993) Three dimensional time-of-flight magnetic resonance angiography in carotid artery surgery: a comparison with digital subtraction angiorgraphy. Eur J Vasc Surg 7:171–176

    Article  PubMed  CAS  Google Scholar 

  21. DeMarco JK, Huston J, 3rd, Bernstein MA (2004) Evaluation of classic 2D time-of-flight MR angiography in the depiction of severe carotid stenosis. AJR Am J Roentgenol 183:787–793

    PubMed  Google Scholar 

  22. Carr JC, Shaibani A, Russell E, Finn JP (2001) Contrast-enhanced magnetic resonance angiography of the carotid circulation. Top Magn Reson Imaging 12:349–357

    Article  PubMed  CAS  Google Scholar 

  23. U-King-Im JM, Trivedi RA, Graves MJ, Higgins NJ, Cross JJ, Tom BD, Hollingworth W, Eales H, Warburton EA, Kirkpatrick PJ, Antoun NM, Gillard JH (2004) Contrast-enhanced MR angiography for carotid disease: diagnostic and potential dinical impact. Neurology 62:1282–1290

    PubMed  CAS  Google Scholar 

  24. Nael K, Ruehm SG, Michaely HJ, Pope W, Laub G, Finn JP, Villablanca JP (2006) High spatial-resolution CE-MRA of the carotid circulation with parallel imaging: comparison of image quality between 2 different acceleration factors at 3.0 Tesla. Invest Radiol 41:391–399

    Article  PubMed  Google Scholar 

  25. Naganawa S, Koshikawa T, Fukatsu H, Sakurai Y, Ichinose N, Ishiguchi T, Ishigaki T (2001) Contrast-enhanced MR angiography of the carotid artery using 3D time-resolved imaging of contrast kinetics: comparison with real-time fluoroscopic triggered 3D-elliptical centric view ordering. Radiat Med 19:185–192

    PubMed  CAS  Google Scholar 

  26. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC (1996) Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 201:705–710

    PubMed  CAS  Google Scholar 

  27. Foo TK, Saranathan M, Prince MR, Chenevert TL (1997) Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. Radiology 203:275–280

    PubMed  CAS  Google Scholar 

  28. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL (1997) Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology 205:137–146

    PubMed  CAS  Google Scholar 

  29. Blakeley DD, Oddone EZ, Hasselblad V, Simel DL, Matchar DB (1995) Noninvasive carotid artery testing. A meta-analytic review. Ann Intern Med 122:360–367

    PubMed  CAS  Google Scholar 

  30. Nederkoorn PJ, van der Graaf Y, Hunink MG (2003) Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 34:1324–1332

    Article  PubMed  Google Scholar 

  31. Atlas SW, Sheppard L, Goldberg HI, Hurst RW, Listerud J, Flamm E (1997) Intracranial aneurysms: detection and characterization with MR angiography with use of an advanced postprocessing technique in a blinded-reader study. Radiology 203:807–814

    PubMed  CAS  Google Scholar 

  32. Duran M, Schoenberg SO, Yuh WT, Knopp MV, van Kaick G, Essig M (2002) Cerebral arteriovenous malformations: morphologic evaluation by ultrashort 3D gadolinium-enhanced MR angiography. Eur Radiol 12:2957–2964

    PubMed  CAS  Google Scholar 

  33. Essig M, Reichenbach JR, Schad LR, Schoenberg SO, Debus J, Kaiser WA (1999) High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17:1417–1425

    Article  PubMed  CAS  Google Scholar 

  34. Schellinger PD, Fiebach JB (2004) Intracranial hemorrhage: the role of magnetic resonance imaging. Neurocrit Care 1:31–45

    Article  PubMed  Google Scholar 

  35. Fellner C, Strotzer M, Fraunhofer S, Held P, Spies V, Seitz J, Fellner F (1997) MR angiography of the supra-aortic arteries using a dedicated head and neck coil: image quality and assessment of stenoses. Neuroradiology 39:763–771

    Article  PubMed  CAS  Google Scholar 

  36. Weiger M, Pruessman KP, Kassner A, Roditi G, Lawton T, Reid A, Boesiger P (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677

    Article  PubMed  CAS  Google Scholar 

  37. Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio JC Jr, Looby RJ, Supkowski RM, Horrocks WD Jr, McMurry TJ, Lauffer RB (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:152–3162

    Article  Google Scholar 

  38. Bluemke DA, Stillman AE, Bis KG, Grist TM, Baum RA, D’Agostino R, Malden ES, Pierro JA, Yucel EK (2001) Carotid MR angiography: phase II study of safety and efficacy for MS-325. Radiology 219:114–122

    PubMed  CAS  Google Scholar 

  39. Perreault P, Edelman MA, Baum RA, Yucel EK, Weisskoff RM, Shamsi K, Mohler ER 3rd (2003) MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology 229:811–820

    Article  PubMed  Google Scholar 

  40. Goyen M, Shamsi K, Schoenberg SO (2006) Vasovist-enhanced MR angiography. Eur Radiol 16 [Suppl 2]:B9–B14

    PubMed  Google Scholar 

  41. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  42. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrastmedia solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  43. Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, Bridson WE, Yucel EK, Mistretta CA (1998) Steady state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    PubMed  CAS  Google Scholar 

  44. Nikolaou K, Kramer H, Grosse C, Clevert D, Dietrich O, Hartmann M, Chamberlin P, Assmann S, Reiser MF, Schoenberg SO (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241:861–872

    Article  PubMed  Google Scholar 

  45. Hartmann M, Wiethoff AJ, Hentrich HR, Rohrer M (2006) Initial imaging recommendations for Vasovist angiography. Eur Radiol 16 [Suppl 2]:B15–B23

    PubMed  Google Scholar 

  46. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  47. Reichenbach JR, Venkatesan R, Schillinger et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277

    PubMed  CAS  Google Scholar 

  48. Essig M, Reichenbach JR, Schad LR, et al (1999) High-resolution MR venography of cerebral arteriovenous malformations. Mag Res Imaging 17:1417–1425

    Article  CAS  Google Scholar 

  49. Sehal V, Delproposto Z, Haacke EM, et al (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450

    Article  Google Scholar 

  50. Barth M, Noebauer-Huhmann I-M, Reichenbach JR, et al (2003) High resolution, three dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Essig, M., Giesel, F.L. (2008). Head and Neck MRA. In: Leiner, T., Goyen, M., Rohrer, M., Schönberg, S. (eds) Clinical Blood Pool MR Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77861-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77861-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77860-8

  • Online ISBN: 978-3-540-77861-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics