Skip to main content

Tendon and Ligament Tissue Engineering: Restoring Tendon/Ligament and Its Interfaces

  • Chapter
Fundamentals of Tissue Engineering and Regenerative Medicine

Abstract

Tendon and ligament injuries are very common. Over 800,000 people each year require medical attention for injuries to tendons, ligaments, or the joint capsule [14]. Unfortunately, tendon and ligament are relatively acellular and poorly vascularized tissues and have a poor capacity for healing [59, 65, 68, 119]. Suturing and grafts have had limited success in tendon and ligament repair, often resulting in poor healing, donor site morbidity, and insufficient mechanical properties [59, 65, 68, 124]. For this reason, there is currently a great deal of research on tendon and ligament tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman GH, Horan RL, Lu HH, et al (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131–41.

    Article  PubMed  CAS  Google Scholar 

  2. Altman GH, Horan RL, Martin I, et al (2002) Cell differentiation by mechanical stress. Faseb J 16(2):270–2.

    PubMed  CAS  Google Scholar 

  3. Altman GH, Diaz F, Jakuba C, et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–16.

    Article  PubMed  CAS  Google Scholar 

  4. Altman GH, Lu HH, Horan RL, et al (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124(6):742–9.

    Article  PubMed  Google Scholar 

  5. Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70(1):51–4.

    Article  PubMed  CAS  Google Scholar 

  6. Awad HA, Boivin GP, Dressler MR, et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21(3):420–31.

    Article  PubMed  CAS  Google Scholar 

  7. Awad HA, Butler DL, Harris MT, et al (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res 51(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  8. Bellincampi LD, Closkey RF, Prasad R, et al (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16(4):414–20.

    Article  PubMed  CAS  Google Scholar 

  9. Benjamin M, Ralphs JR (1996) Tendons in health and disease. Man Ther 1(4):186–191.

    Article  PubMed  Google Scholar 

  10. Benjamin M, Evans EJ, Rao RD, et al (1991) Quantitative differences in the histology of the attachment zones of the meniscal horns in the knee joint of man. J Anat 177:127–34.

    PubMed  CAS  Google Scholar 

  11. Birk DE, Fitch JM, Babiarz JP, et al (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95 ( Pt 4):649–57.

    PubMed  CAS  Google Scholar 

  12. Bradshaw AD, Sage EH (2000) Regulation of cell behavior by matricellular proteins. In: Lanza RP, Langer R, Vananti J (eds) Principles of tissue engineering. Academic Press, San Diego, pp 119–27.

    Chapter  Google Scholar 

  13. Butler DL, Awad HA (1999) Perspectives on cell and collagen composites for tendon repair. Clin Orthop Relat Res (367 Suppl):S324–32.

    Google Scholar 

  14. Butler DL, Dessler M, Awad H (2003) Functional tissue engineering: assessment of function in tendon and ligament repair. In: Guilak F, Butler DL, Goldstein SA, et al (eds) Functional tissue engineering. Springer, New York, pp 213–26.

    Chapter  Google Scholar 

  15. Butler DL, Guan Y, Kay MD, et al (1992) Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25(5):511–8.

    Article  PubMed  CAS  Google Scholar 

  16. Carrier RL, Papadaki M, Rupnick M, et al (1999) Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64(5):580–9.

    Article  PubMed  CAS  Google Scholar 

  17. Charles-Harris M, Navarro M, Engel E, et al (2005) Surface characterization of completely degradable composite scaffolds. J Mater Sci Mater Med 16(12):1125–30.

    Article  PubMed  CAS  Google Scholar 

  18. Chen EH, Black J (1980) Materials design analysis of the prosthetic anterior cruciate ligament. J Biomed Mater Res 14(5):567–86.

    Article  PubMed  CAS  Google Scholar 

  19. Chen J, Altman GH, Karageorgiou V, et al (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67(2):559–70.

    Article  PubMed  CAS  Google Scholar 

  20. Chen J, Horan RL, Bramono D, et al (2006) Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng 12(11):3085–95.

    Article  PubMed  CAS  Google Scholar 

  21. Cooper JA, Lu HH, Ko FK, et al (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26(13):1523–32.

    Article  PubMed  CAS  Google Scholar 

  22. Cooper JA, Jr, Bailey LO, Carter JN, et al (2006) Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials 27(13):2747–54.

    Article  PubMed  CAS  Google Scholar 

  23. Cornwell KG, Downing BR, Pins GD (2004) Characterizing fibroblast migration on discrete collagen threads for applications in tissue regeneration. J Biomed Mater Res A 71(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  24. Cornwell KG, Lei P, Andreadis ST, et al (2007) Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions. J Biomed Mater Res A 80(2):362–71.

    PubMed  Google Scholar 

  25. Costa MA, Wu C, Pham BV, et al (2006) Tissue engineering of flexor tendons: optimization of tenocyte proliferation using growth factor supplementation. Tissue Eng 12(7):1937–43.

    Article  PubMed  CAS  Google Scholar 

  26. Cristino S, Grassi F, Toneguzzi S, et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A 73(3):275–83.

    PubMed  CAS  Google Scholar 

  27. Doroski DM, Brink KS, Temenoff JS (2007) Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28(2):187–202.

    Article  PubMed  CAS  Google Scholar 

  28. Elefteriou F, Exposito JY, Garrone R, et al (2001) Binding of tenascin-X to decorin. FEBS Lett 495(1–2):44–7.

    Article  PubMed  CAS  Google Scholar 

  29. Fan L, Sarkar K, Franks DJ, et al (1997) Estimation of total collagen and types I and III collagen in canine rotator cuff tendons. Calcif Tissue Int 61(3):223–9.

    Article  PubMed  CAS  Google Scholar 

  30. Fawzi-Grancher S, De Isla N, Faure G, et al (2006) Optimisation of biochemical condition and substrates in vitro for tissue engineering of ligament. Ann Biomed Eng 34(11):1767–77.

    Article  PubMed  Google Scholar 

  31. Fenwick SA, Hazleman BL, Riley GP (2002) The vasculature and its role in the damaged and healing tendon. Arthritis Res 4(4):252–60.

    Article  PubMed  Google Scholar 

  32. Fermor B, Urban J, Murray D, et al (1998) Proliferation and collagen synthesis of human anterior cruciate ligament cells in vitro: effects of ascorbate-2-phosphate, dexamethasone and oxygen tension. Cell Biol Int 22(9–10):635–40.

    Article  PubMed  CAS  Google Scholar 

  33. Forslund C, Aspenberg P (2001) Tendon healing stimulated by injected CDMP-2. Med Sci Sports Exerc 33(5):685–7.

    PubMed  CAS  Google Scholar 

  34. Forslund C, Aspenberg P (2003) Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2. Am J Sports Med 31(4):555–9.

    PubMed  Google Scholar 

  35. Forslund C, Rueger D, Aspenberg P (2003) A comparative dose-response study of cartilage-derived morphogenetic protein (CDMP)-1, -2 and -3 for tendon healing in rats. J Orthop Res 21(4):617–21.

    Article  PubMed  CAS  Google Scholar 

  36. Freed LE, Guilak F, Guo XE, et al (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12(12):3285–305.

    Article  PubMed  CAS  Google Scholar 

  37. Fu SC, Wong YP, Cheuk YC, et al (2005) TGF-beta1 reverses the effects of matrix anchorage on the gene expression of decorin and procollagen type I in tendon fibroblasts. Clin Orthop Relat Res (431):226–32.

    Article  Google Scholar 

  38. Funakoshi T, Majima T, Iwasaki N, et al (2005) Application of tissue engineering techniques for rotator cuff regeneration using a chitosan-based hyaluronan hybrid fiber scaffold. Am J Sports Med 33(8):1193–201.

    Article  PubMed  Google Scholar 

  39. Funakoshi T, Majima T, Iwasaki N, et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A 74(3):338–46.

    PubMed  Google Scholar 

  40. Gao J, Rasanen T, Persliden J, et al (1996) The morphology of ligament insertions after failure at low strain velocity: an evaluation of ligament entheses in the rabbit knee. J Anat 189 ( Pt 1):127–33.

    PubMed  Google Scholar 

  41. Ge Z, Goh JC, Lee EH (2005) Selection of cell source for ligament tissue engineering. Cell Transplant 14(8):573–83.

    Article  PubMed  Google Scholar 

  42. Geiger B, Bershadsky A, Pankov R, et al (2001) Transmembrane crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805.

    Article  PubMed  CAS  Google Scholar 

  43. Gelberman RH, Chu CR, Williams CS, et al (1992) Angiogenesis in healing autogenous flexor-tendon grafts. J Bone Joint Surg Am 74(8):1207–16.

    PubMed  CAS  Google Scholar 

  44. Gentleman E, Livesay GA, Dee KC, et al (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–36.

    Article  PubMed  Google Scholar 

  45. Gentleman E, Lay AN, Dickerson DA, et al (2003) Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24(21):3805–13.

    Article  PubMed  CAS  Google Scholar 

  46. Gomez MA (1995) The physiology and biochemistry of soft tissue healing. In: Griffin LY (eds) Rehabilitation of the injured knee. Mosby Company, St. Louis, pp 34–44.

    Google Scholar 

  47. Gong Y, Zhou Q, Gao C, et al (2007) In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomater 3(4):531–40.

    Article  PubMed  CAS  Google Scholar 

  48. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–14.

    Article  PubMed  CAS  Google Scholar 

  49. Graham HK, Holmes DF, Watson RB, et al (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. J Mol Biol 295(4):891–902.

    Article  PubMed  CAS  Google Scholar 

  50. Grinnell F (1984) Fibronectin and wound healing. J Cell Biochem 26(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  51. Hankemeier S, Keus M, Zeichen J, et al (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–9.

    Article  PubMed  CAS  Google Scholar 

  52. Harada M, Takahara M, Zhe P, et al (2007) Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthritis Cartilage 15(4):468–74.

    Article  PubMed  CAS  Google Scholar 

  53. Henshaw DR, Attia E, Bhargava M, et al (2006) Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481–90.

    Article  PubMed  CAS  Google Scholar 

  54. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–24.

    Article  PubMed  CAS  Google Scholar 

  55. Ilic MZ, Carter P, Tyndall A, et al (2005) Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem J 385(Pt 2):381–8.

    PubMed  CAS  Google Scholar 

  56. Jozsa L, Lehto M, Kannus P, et al (1989) Fibronectin and laminin in Achilles tendon. Acta Orthop Scand 60(4):469–71.

    PubMed  CAS  Google Scholar 

  57. Kasemkijwattana C, Menetrey J, Bosch P, et al (2000) Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res (370):272–85.

    Article  Google Scholar 

  58. Khatod M, Amiel D (2003) Ligament biochemistry and physiology. In: Pedowitz R, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkens, Philadelphia, pp 31–42.

    Google Scholar 

  59. Khatod M, Akeson WH, Amiel D (2003) Ligament injury and repair. In: Pedowitz RA, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkens, Philadelphia, pp 185–201.

    Google Scholar 

  60. Kobayashi K, Healey RM, Sah RL, et al (2000) Novel method for the quantitative assessment of cell migration: a study on the motility of rabbit anterior cruciate (ACL) and medial collateral ligament (MCL) cells. Tissue Eng 6(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  61. Komi PV (1990) Relevance of in vivo force measurements to human biomechanics. J Biomech 23 Suppl 1:23–34.

    Article  Google Scholar 

  62. Komi PV, Fukashiro S, Jarvinen M (1992) Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med 11(3):521–31.

    PubMed  CAS  Google Scholar 

  63. Koob TJ (2002) Biomimetic approaches to tendon repair. Comp Biochem Physiol A Mol Integr Physiol 133(4):1171–92.

    Article  PubMed  Google Scholar 

  64. Lapiere CM, Nusgens B, Pierard GE (1977) Interaction between collagen type I and type III in conditioning bundles organization. Connect Tissue Res 5(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  65. Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26(36):7530–6.

    Article  PubMed  CAS  Google Scholar 

  66. Laurencin CT, Ambrosio AM, Borden MD, et al (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46.

    Article  PubMed  CAS  Google Scholar 

  67. Lee CH, Shin HJ, Cho IH, et al (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261–70.

    Article  PubMed  CAS  Google Scholar 

  68. Lin TW, Cardenas L, Soslowsky LJ (2004) Biomechanics of tendon injury and repair. J Biomech 37(6):865–77.

    Article  PubMed  Google Scholar 

  69. Liu SH, Yang RS, al-Shaikh R, et al (1995) Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res (318):265–78.

    PubMed  Google Scholar 

  70. Louie L, Yannas I, Spector M (1998) Tissue engineered tendon. In: Patrick CW, Mikos AG, McIntire LV (eds) Frontiers in tissue engineering. Elsevier Science Ltd., New York, pp 412–42.

    Chapter  Google Scholar 

  71. Lu HH, Jiang J (2006) Interface tissue engineering and the formulation of multiple-tissue systems. Adv Biochem Eng Biotechnol 102:91–111.

    PubMed  CAS  Google Scholar 

  72. Lu HH, El-Amin SF, Scott KD, et al (2003) Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 64(3):465–74.

    Article  PubMed  CAS  Google Scholar 

  73. Lu HH, Cooper JA, Jr, Manuel S, et al (2005) Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 26(23):4805–16.

    Article  PubMed  CAS  Google Scholar 

  74. Majima T, Funakosi T, Iwasaki N, et al (2005) Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering. J Orthop Sci 10(3):302–7.

    Article  PubMed  CAS  Google Scholar 

  75. Martin RB, Burr DB, Sharkey NA (1998) Mechanical properties of ligament and tendon. In: (eds) Skeletal tissue mechanics. Springer, New York, pp 309–46.

    Google Scholar 

  76. McGonagle D, Marzo-Ortega H, Benjamin M, et al (2003) Report on the Second international Enthesitis Workshop. Arthritis Rheum 48(4):896–905.

    Article  PubMed  Google Scholar 

  77. Meaney Murray M, Rice K, Wright RJ, et al (2003) The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen-GAG scaffold. J Orthop Res 21(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  78. Mikic B (2004) Multiple effects of GDF-5 deficiency on skeletal tissues: implications for therapeutic bioengineering. Ann Biomed Eng 32(3):466–76.

    Article  PubMed  Google Scholar 

  79. Mikic B, Schalet BJ, Clark RT, et al (2001) GDF-5 deficiency in mice alters the ultrastructure, mechanical properties and composition of the Achilles tendon. J Orthop Res 19(3):365–71.

    Article  PubMed  CAS  Google Scholar 

  80. Milz S, Tischer T, Buettner A, et al (2004) Molecular composition and pathology of entheses on the medial and lateral epicondyles of the humerus: a structural basis for epicondylitis. Ann Rheum Dis 63(9):1015–21.

    Article  PubMed  CAS  Google Scholar 

  81. Molloy T, Wang Y, Murrell G (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33(5):381–94.

    Article  PubMed  Google Scholar 

  82. Moreau J, Chen J, Kaplan D, et al (2006) Sequential growth factor stimulation of bone marrow stromal cells in extended culture. Tissue Eng 12(10):2905–12.

    Article  PubMed  CAS  Google Scholar 

  83. Moreau JE, Chen J, Horan RL, et al (2005) Sequential growth factor application in bone marrow stromal cell ligament engineering. Tissue Eng 11(11–12):1887–97.

    Article  PubMed  CAS  Google Scholar 

  84. Moreau JE, Chen J, Bramono DS, et al (2005) Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. J Orthop Res 23(1):164–74.

    Article  PubMed  CAS  Google Scholar 

  85. Moriggl B, Jax P, Milz S, et al (2001) Fibrocartilage at the entheses of the suprascapular (superior transverse scapular) ligament of man-a ligament spanning two regions of a single bone. J Anat 199(Pt 5):539–45.

    Article  PubMed  CAS  Google Scholar 

  86. Murray MM, Spector M (2001) The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials 22(17):2393–402.

    Article  PubMed  CAS  Google Scholar 

  87. Murray MM, Forsythe B, Chen F, et al (2006) The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res 24(3):508–15.

    Article  PubMed  CAS  Google Scholar 

  88. Niyibizi C, Sagarrigo Visconti C, Gibson G, et al (1996) Identification and immunolocalization of type X collagen at the ligament-bone interface. Biochem Biophys Res Commun 222(2):584–9.

    Article  PubMed  CAS  Google Scholar 

  89. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58(8):1074–82.

    PubMed  CAS  Google Scholar 

  90. Obradovic B, Carrier RL, Vunjak-Novakovic G, et al (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63(2):197–205.

    Article  PubMed  CAS  Google Scholar 

  91. Ouyang HW, Toh SL, Goh J, et al (2005) Assembly of bone marrow stromal cell sheets with knitted poly (L-lactide) scaffold for engineering ligament analogs. J Biomed Mater Res B Appl Biomater 75(2):264–71.

    PubMed  Google Scholar 

  92. Petersen W, Tillmann B (1999) Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl) 200(3):325–34.

    Article  CAS  Google Scholar 

  93. Petrigliano FA, McAllister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22(4):441–51.

    PubMed  Google Scholar 

  94. Pins GD, Christiansen DL, Patel R, et al (1997) Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J 73(4):2164–72.

    Article  PubMed  CAS  Google Scholar 

  95. Probstmeier R, Pesheva P (1999) Tenascin-C inhibits beta1 integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 9(2):101–14.

    Article  PubMed  CAS  Google Scholar 

  96. Qin TW, Yang ZM, Wu ZZ, et al (2005) Adhesion strength of human tenocytes to extracellular matrix component-modified poly(DL-lactide-co-glycolide) substrates. Biomaterials 26(33):6635–42.

    Article  PubMed  CAS  Google Scholar 

  97. Rickert M, Wang H, Wieloch P, et al (2005) Adenovirus-mediated gene transfer of growth and differentiation factor-5 into tenocytes and the healing rat Achilles tendon. Connect Tissue Res 46(4-5):175–83.

    Article  PubMed  CAS  Google Scholar 

  98. Rumian AP, Wallace AL, Birch HL (2007) Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features-a comparative study in an ovine model. J Orthop Res 25(4):458–64.

    Article  PubMed  CAS  Google Scholar 

  99. Scapinelli R, Little K (1970) Observations on the mechanically induced differentiation of cartilage from fibrous connective tissue. J Pathol 101(2):85–91.

    Article  PubMed  CAS  Google Scholar 

  100. Schulze-Tanzil G, Mobasheri A, Clegg PD, et al (2004) Cultivation of human tenocytes in high-density culture. Histochem Cell Biol 122(3):219–28.

    Article  PubMed  CAS  Google Scholar 

  101. Scott-Burden T (1994) Extracellular Matrix: The Cellular Environment. NIPS 9:110–4.

    CAS  Google Scholar 

  102. Shrive NG, Thornton GM, Hart DA, et al (2003) Ligament mechanics. In: Pedowitz RA, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries. Lippincott Williams and Wilkens, Philadelphia, pp 97–112.

    Google Scholar 

  103. Takahashi S, Leiss M, Moser M, et al (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol.

    Google Scholar 

  104. Takezawa T, Ozaki K, Takabayashi C (2007) Reconstruction of a hard connective tissue utilizing a pressed silk sheet and type-I collagen as the scaffold for fibroblasts. Tissue Eng 13(6):1357–66.

    Article  PubMed  CAS  Google Scholar 

  105. Thomopoulos S, Harwood FL, Silva MJ, et al (2005) Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J Hand Surg [Am] 30(3):441–7.

    Article  Google Scholar 

  106. Tischer T, Vogt S, Aryee S, et al (2007) Tissue engineering of the anterior cruciate ligament: a new method using acellularized tendon allografts and autologous fibroblasts. Arch Orthop Trauma Surg.

    Google Scholar 

  107. Torres DS, Freyman TM, Yannas IV, et al (2000) Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 21(15):1607–19.

    Article  PubMed  CAS  Google Scholar 

  108. Toyoda T, Matsumoto H, Fujikawa K, et al (1998) Tensile load and the metabolism of anterior cruciate ligament cells. Clin Orthop Relat Res (353):247–55.

    Article  Google Scholar 

  109. Trieb K, Blahovec H, Brand G, et al (2004) In vivo and in vitro cellular ingrowth into a new generation of artificial ligaments. Eur Surg Res 36(3):148–51.

    Article  PubMed  CAS  Google Scholar 

  110. Tsutsumi S, Shimazu A, Miyazaki K, et al (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–9.

    Article  PubMed  CAS  Google Scholar 

  111. Tuite DJ, Finegan PJ, Saliaris AP, et al (1998) Anatomy of the proximal musculotendinous junction of the adductor longus muscle. Knee Surg Sports Traumatol Arthrosc 6(2):134–7.

    Article  PubMed  CAS  Google Scholar 

  112. Vandervliet EJ, Vanhoenacker FM, Snoeckx A, et al (2007) Sports related acute and chronic avulsion injuries in children and adolescents with special emphasis on tennis. Br J Sports Med.

    Google Scholar 

  113. Virchenko O, Fahlgren A, Skoglund B, et al (2005) CDMP-2 injection improves early tendon healing in a rabbit model for surgical repair. Scand J Med Sci Sports 15(4):260–4.

    Article  PubMed  CAS  Google Scholar 

  114. Vogel KG (2004) What happens when tendons bend and twist? Proteoglycans. J Musculoskelet Neuronal Interact 4(2):202–3.

    PubMed  CAS  Google Scholar 

  115. Vogel KG, Koob TJ (1989) Structural specialization in tendons under compression. Int Rev Cytol 115:267–93.

    Article  PubMed  CAS  Google Scholar 

  116. Vogel KG, Meyers AB (1999) Proteins in the tensile region of adult bovine deep flexor tendon. Clin Orthop Relat Res (367 Suppl):S344–55.

    Article  PubMed  Google Scholar 

  117. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–75.

    Article  PubMed  CAS  Google Scholar 

  118. Vunjak-Novakovic G, Altman G, Horan R, et al (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6:131–56.

    Article  PubMed  CAS  Google Scholar 

  119. Wang JH (2006) Mechanobiology of tendon. J Biomech 39(9):1563–82.

    Article  PubMed  Google Scholar 

  120. Webb K, Hitchcock RW, Smeal RM, et al (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39(6):1136–44.

    Article  PubMed  Google Scholar 

  121. Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12(3–4):211–27.

    Article  PubMed  CAS  Google Scholar 

  122. Wolfman NM, Hattersley G, Cox K, et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 100(2):321–30.

    Article  PubMed  CAS  Google Scholar 

  123. Woo SL, Newton PO, MacKenna DA, et al (1992) A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments. J Biomech 25(4):377–86.

    Article  PubMed  CAS  Google Scholar 

  124. Woo SL, Abramowitch SD, Kilger R, et al (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39(1):1–20.

    Article  PubMed  Google Scholar 

  125. Woo SL, Gomez MA, Seguchi Y, et al (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1(1):22–9.

    Article  PubMed  CAS  Google Scholar 

  126. Woo SL, Gomez MA, Sites TJ, et al (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69(8):1200–11.

    PubMed  CAS  Google Scholar 

  127. Woo SL, Debski RE, Zeminski J, et al (2000) Injury and repair of ligaments and tendons. Annu Rev Biomed Eng 2:83–118.

    Article  PubMed  CAS  Google Scholar 

  128. Yoon JH, Halper J (2005) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 5(1):22–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lim, J., Temenoff, J. (2009). Tendon and Ligament Tissue Engineering: Restoring Tendon/Ligament and Its Interfaces. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics