Skip to main content

Noncontact Atomic Force Microscopy and Related Topics

  • Chapter
Nanotribology and Nanomechanics

Abstract

Scanning probe microscopy (SPM) methods such as scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) are the basic technologies for nanotechnology and also for future bottom-up processes. In Sect. 24.1, the principles of AFM such as its operating modes and the NC-AFM frequency-modulation method are fully explained. Then, in Sect. 24.2, applications of NC-AFM to semiconductors, which make clear its potential in terms of spatial resolution and function, are introduced. Next, in Sect. 24.3, applications of NC-AFM to insulators such as alkali halides, fluorides and transition-metal oxides are introduced. Lastly, in Sect. 24.4, applications of NC-AFM to molecules such as carboxylate (RCOO – ) with R=H, CH3, C(CH3)3 and CF3 are introduced. Thus, NC-AFM can observe atoms and molecules on various kinds of surfaces such as semiconductors, insulators and metal oxides with atomic or molecular resolution. These sections are essential to understand the state of the art and future possibilities for NC-AFM, which is the second generation of atom/molecule technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig: Atomic force microscope, method for imaging surfaces with atomic resolution, US Patent 4,724,318 (1986)

    Google Scholar 

  2. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  3. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  4. G. Binnig, H. Rohrer: The scanning tunneling microscope, Sci. Am. 253, 50–56 (1985)

    Article  Google Scholar 

  5. G. Binnig, H. Rohrer: In touch with atoms, Rev. Mod. Phys. 71, S320–S330 (1999)

    Article  Google Scholar 

  6. C.J. Chen: Introduction to Scanning Tunneling Microscopy (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  7. H.-J. Güntherodt, R. Wiesendanger (Eds.): Scanning Tunneling Microscopy I–III (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  8. J.A. Stroscio, W.J. Kaiser (Eds.): Scanning Tunneling Microscopy (Academic, Boston 1993)

    Google Scholar 

  9. R. Wiesendanger: Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge Univ. Press, Cambridge 1994)

    Google Scholar 

  10. S. Morita, R. Wiesendanger, E. Meyer (Eds.): Noncontact Atomic Force Microscopy (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  11. R. Garcia, R. Perez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47, 197–301 (2002)

    Article  CAS  Google Scholar 

  12. F.J. Giessibl: Advances in atomic force microscopy, Rev. Mod. Phys. 75, 949–983 (2003)

    Article  CAS  Google Scholar 

  13. J. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1991)

    Google Scholar 

  14. L. Olsson, N. Lin, V. Yakimov, R. Erlandsson: A method for in situ characterization of tip shape in AC-mode atomic force microscopy using electrostatic interaction, J. Appl. Phys. 84, 4060–4064 (1998)

    Article  CAS  Google Scholar 

  15. S. Akamine, R.C. Barrett, C.F. Quate: Improved atomic force microscopy images using cantilevers with sharp tips, Appl. Phys. Lett. 57, 316–318 (1990)

    Article  CAS  Google Scholar 

  16. T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A 8, 3386–3396 (1990)

    Article  CAS  Google Scholar 

  17. M. Tortonese, R.C. Barrett, C. Quate: Atomic resolution with an atomic force microscope using piezoresistive detection, Appl. Phys. Lett. 62, 834–836 (1993)

    Article  CAS  Google Scholar 

  18. O. Wolter, T. Bayer, J. Greschner: Micromachined silicon sensors for scanning force microscopy, J. Vac. Sci. Technol. 9, 1353–1357 (1991)

    Article  CAS  Google Scholar 

  19. D. Sarid: Scanning Force Microscopy, 2nd edn. (Oxford Univ. Press, New York 1994)

    Google Scholar 

  20. F.J. Giessibl, B.M. Trafas: Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum, Rev. Sci. Instrum. 65, 1923–1929 (1994)

    Article  CAS  Google Scholar 

  21. P. Güthner, U.C. Fischer, K. Dransfeld: Scanning near-field acoustic microscopy, Appl. Phys. B 48, 89–92 (1989)

    Article  Google Scholar 

  22. K. Karrai, R.D. Grober: Piezoelectric tip–sample distance control for near field optical microscopes, Appl. Phys. Lett. 66, 1842–1844 (1995)

    Article  CAS  Google Scholar 

  23. F.J. Giessibl: High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork, Appl. Phys. Lett. 73, 3956–3958 (1998)

    Article  CAS  Google Scholar 

  24. F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart: Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy, Science 289, 422–425 (2000)

    Article  CAS  Google Scholar 

  25. F. Giessibl, C. Gerber, G. Binnig: A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum, J. Vac. Sci. Technol. B 9, 984–988 (1991)

    Article  CAS  Google Scholar 

  26. F. Ohnesorge, G. Binnig: True atomic resolution by atomic force microscopy through repulsive and attractive forces, Science 260, 1451–1456 (1993)

    Article  CAS  Google Scholar 

  27. F.J. Giessibl, G. Binnig: True atomic resolution on KBr with a low-temperature atomic force microscope in ultrahigh vacuum, Ultramicroscopy 42-44, 281–286 (1992)

    Article  CAS  Google Scholar 

  28. S.P. Jarvis, H. Yamada, H. Tokumoto, J.B. Pethica: Direct mechanical measurement of interatomic potentials, Nature 384, 247–249 (1996)

    Article  CAS  Google Scholar 

  29. L. Howald, R. Lüthi, E. Meyer, P. Guthner, H.-J. Güntherodt: Scanning force microscopy on the Si(111)7 × 7 surface reconstruction, Z. Phys. B 93, 267–268 (1994)

    Article  CAS  Google Scholar 

  30. L. Howald, R. Lüthi, E. Meyer, H.-J. Güntherodt: Atomic-force microscopy on the Si(111)7 × 7 surface, Phys. Rev. B 51, 5484–5487 (1995)

    Article  CAS  Google Scholar 

  31. Y. Martin, C.C. Williams, H.K. Wickramasinghe: Atomic force microscope—force mapping and profiling on a sub 100 Å scale, J. Appl. Phys. 61, 4723–4729 (1987)

    Article  CAS  Google Scholar 

  32. T.R. Albrecht, P. Grutter, H.K. Horne, D. Rugar: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69, 668–673 (1991)

    Article  Google Scholar 

  33. F.J. Giessibl: Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy, Science 267, 68–71 (1995)

    Article  CAS  Google Scholar 

  34. S. Kitamura, M. Iwatsuki: Observation of silicon surfaces using ultrahigh-vacuum noncontact atomic force microscopy, Jpn. J. Appl. Phys. 35, 668–L671 (1995)

    Article  Google Scholar 

  35. R. Erlandsson, L. Olsson, P. Martensson: Inequivalent atoms and imaging mechanisms in AC-mode atomic-force microscopy of Si(111)7 × 7, Phys. Rev. B 54, R8309–R8312 (1996)

    Article  CAS  Google Scholar 

  36. N. Burnham, R.J. Colton: Measuring the nanomechanical and surface forces of materials using an atomic force microscope, J. Vac. Sci. Technol. A 7, 2906–2913 (1989)

    Article  CAS  Google Scholar 

  37. D. Tabor, R.H.S. Winterton: Direct measurement of normal and related van der Waals forces, Proc. R. Soc. London A 312, 435 (1969)

    CAS  Google Scholar 

  38. F.J. Giessibl: Forces and frequency shifts in atomic resolution dynamic force microscopy, Phys. Rev. B 56, 16011–16015 (1997)

    Article  Google Scholar 

  39. G. Binnig, H. Rohrer, C. Gerber, E. Weibel: 7 × 7 reconstruction on Si(111) resolved in real space, Phys. Rev. Lett. 50, 120–123 (1983)

    Article  CAS  Google Scholar 

  40. H. Goldstein: Classical Mechanics (Addison Wesley, Reading 1980)

    Google Scholar 

  41. U. Dürig: Interaction sensing in dynamic force microscopy, New J. Phys. 2, 5.1–5.12 (2000)

    Article  Google Scholar 

  42. F.J. Giessibl: A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy, Appl. Phys. Lett. 78, 123–125 (2001)

    Article  CAS  Google Scholar 

  43. U. Dürig, H.P. Steinauer, N. Blanc: Dynamic force microscopy by means of the phase-controlled oscillator method, J. Appl. Phys. 82, 3641–3651 (1997)

    Article  Google Scholar 

  44. F.J. Giessibl, H. Bielefeldt, S. Hembacher, J. Mannhart: Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy, Appl. Surf. Sci. 140, 352–357 (1999)

    Article  CAS  Google Scholar 

  45. M.A. Lantz, H.J. Hug, R. Hoffmann, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Quantitative measurement of short-range chemical bonding forces, Science 291, 2580–2583 (2001)

    Article  CAS  Google Scholar 

  46. F.J. Giessibl, M. Herz, J. Mannhart: Friction traced to the single atom, Proc. Nat. Acad. Sci. USA 99, 12006–12010 (2002)

    Article  CAS  Google Scholar 

  47. N. Nakagiri, M. Suzuki, K. Oguchi, H. Sugimura: Site discrimination of adatoms in Si(111)-7 × 7 by noncontact atomic force microscopy, Surf. Sci. Lett. 373, L329–L332 (1997)

    Article  CAS  Google Scholar 

  48. Y. Sugawara, M. Ohta, H. Ueyama, S. Morita: Defect motion on an InP(110) surface observed with noncontact atomic force microscopy, Science 270, 1646–1648 (1995)

    Article  CAS  Google Scholar 

  49. T. Uchihashi, Y. Sugawara, T. Tsukamoto, M. Ohta, S. Morita: Role of a covalent bonding interaction in noncontact-mode atomic-force microscopy on Si(111)7 × 7, Phys. Rev. B 56, 9834–9840 (1997)

    Article  CAS  Google Scholar 

  50. K. Yokoyama, T. Ochi, A. Yoshimoto, Y. Sugawara, S. Morita: Atomic resolution imaging on Si(100)2 × 1 and Si(100)2 × 1-H surfaces using a non-contact atomic force microscope TS11, Jpn. J. Appl. Phys. 39, L113–L115 (2000)

    Article  CAS  Google Scholar 

  51. Y. Sugawara, T. Minobe, S. Orisaka, T. Uchihashi, T. Tsukamoto, S. Morita: Non-contact AFM images measured on Si(111)\( \sqrt{3}\times \sqrt{3} \)-Ag and Ag(111) surfaces, Surf. Interface Anal. 27, 456–461 (1999)

    Article  CAS  Google Scholar 

  52. K. Yokoyama, T. Ochi, Y. Sugawara, S. Morita: Atomically resolved Ag imaging on Si(111)\( \sqrt{3}\times \sqrt{3} \)-Ag surface with noncontact atomic force microscope, Phys. Rev. Lett. 83, 5023–5026 (1999)

    Article  CAS  Google Scholar 

  53. M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, Ch. Gerber, L. Howald, H.-J. Güntherodt: True atomic resolution on the surface of an insulator via ultrahigh vacuum dynamic force microscopy, Probe Microscopy 1, 3–7 (1997)

    CAS  Google Scholar 

  54. M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, C. Loppacher, Ch. Gerber, H.-J. Güntherodt: Dynamic SFM with true atomic resolution on alkali halide surfaces, Appl. Phys. A 66, S293–S294 (1998)

    Article  CAS  Google Scholar 

  55. R. Hoffmann, M.A. Lantz, H.J. Hug, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Atomic resolution imaging and force versus distance measurements on KBr(001) using low temperature scanning force microscopy, Appl. Surf. Sci. 188, 238–244 (2002)

    Article  CAS  Google Scholar 

  56. R. Bennewitz, A.S. Foster, L.N. Kantotovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A.L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): Experiment and theory, Phys. Rev. B 62, 2074–2084 (2000)

    Article  CAS  Google Scholar 

  57. A.I. Livshits, A.L. Shluger, A.L. Rohl, A.S. Foster: Model of noncontact scanning force microscopy on ionic surfaces, Phys. Rev. 59, 2436–2448 (1999)

    Article  CAS  Google Scholar 

  58. R. Bennewitz, O. Pfeiffer, S. Schär, V. Barwich, E. Meyer, L.N. Kantorovich: Atomic corrugation in nc-AFM of alkali halides, Appl. Surf. Sci. 188, 232–237 (2002)

    Article  CAS  Google Scholar 

  59. R. Bennewitz, S. Schär, E. Gnecco, O. Pfeiffer, M. Bammerlin, E. Meyer: Atomic structure of alkali halide surfaces, Appl. Phys. A 78, 837–841 (2004)

    Article  CAS  Google Scholar 

  60. M. Gauthier, L. Kantrovich, M. Tsukada: Theory of energy dissipation into surface viblationsed. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002) pp.371–394

    Google Scholar 

  61. H.J. Hug, A. Baratoff: Measurement of dissipation induced by tip–sample interactions. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002) pp.395–431

    Google Scholar 

  62. R. Hoffmann, L.N. Kantorovich, A. Baratoff, H.J. Hug, H.-J. Güntherodt: Sublattice identification in scanning force microscopy on alkali halide surfaces, Phys. Rev. B 92, 146103/1–4 (2004)

    CAS  Google Scholar 

  63. C. Barth, M. Reichling: Resolving ions and vacancies at step edges on insulating surfaces, Surf. Sci. 470, L99–L103 (2000)

    Article  CAS  Google Scholar 

  64. R. Bennewitz, M. Reichling, E. Matthias: Force microscopy of cleaved and electron-irradiated CaF2(111) surfaces in ultra-high vacuum, Surf. Sci. 387, 69–77 (1997)

    Article  CAS  Google Scholar 

  65. M. Reichling, C. Barth: Scanning force imaging of atomic size defects on the CaF2(111) surface, Phys. Rev. Lett. 83, 768–771 (1999)

    Article  CAS  Google Scholar 

  66. M. Reichling, M. Huisinga, S. Gogoll, C. Barth: Degradation of the CaF2(111) surface by air exposure, Surf. Sci. 439, 181–190 (1999)

    Article  CAS  Google Scholar 

  67. A. Klust, T. Ohta, A.A. Bostwick, Q. Yu, F.S. Ohuchi, M.A. Olmstead: Atomically resolved imaging of a CaF bilayer on Si(111): Subsurface atoms and the image contrast in scanning force microscopy, Phys. Rev. B 69, 035405/1–5 (2004)

    Article  CAS  Google Scholar 

  68. C. Barth, A.S. Foster, M. Reichling, A.L. Shluger: Contrast formation in atomic resolution scanning force microscopy of CaF2(111): experiment and theory, J. Phys. Condens. Matter 13, 2061–2079 (2001)

    Article  CAS  Google Scholar 

  69. A.S. Foster, C. Barth, A.L. Shulger, M. Reichling: Unambiguous interpretation of atomically resolved force microscopy images of an insulator, Phys. Rev. Lett. 86, 2373–2376 (2001)

    Article  CAS  Google Scholar 

  70. A.S. Foster, A.L. Rohl, A.L. Shluger: Imaging problems on insulators: What can be learnt from NC-AFM modeling on CaF2?, Appl. Phys. A 72, S31–S34 (2001)

    Google Scholar 

  71. F.J. Giessibl, M. Reichling: Investigating atomic details of the CaF2(111) surface with a qPlus sensor, Nanotechnology 16, S118–S124 (2005)

    Article  CAS  Google Scholar 

  72. A.S. Foster, C. Barth, A.L. Shluger, R.M. Nieminen, M. Reichling: Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface, Phys. Rev. B 66, 235417/1–10 (2002)

    Article  CAS  Google Scholar 

  73. C. Barth, M. Reichling: Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3 surface, Nature 414, 54–57 (2001)

    Article  CAS  Google Scholar 

  74. M. Reichling, C. Barth: Atomically resolution imaging on Fluorides. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002) pp.109–123

    Google Scholar 

  75. K. Fukui, H. Ohnishi, Y. Iwasawa: Atom-resolved image of the TiO2(110) surface by noncontact atomic force microscopy, Phys. Rev. Lett. 79, 4202–4205 (1997)

    Article  CAS  Google Scholar 

  76. H. Raza, C.L. Pang, S.A. Haycock, G. Thornton: Non-contact atomic force microscopy imaging of TiO2(100) surfaces, Appl. Surf. Sci. 140, 271–275 (1999)

    Article  CAS  Google Scholar 

  77. C.L. Pang, H. Raza, S.A. Haycock, G. Thornton: Imaging reconstructed TiO2(100) surfaces with non-contact atomic force microscopy, Appl. Surf. Sci. 157, 223–238 (2000)

    Article  Google Scholar 

  78. M. Ashino, T. Uchihashi, K. Yokoyama, Y. Sugawara, S. Morita, M. Ishikawa: STM and atomic-resolution noncontact AFM of an oxygen-deficient TiO2(110) surface, Phys. Rev. B 61, 13955–13959 (2000)

    Article  CAS  Google Scholar 

  79. R.E. Tanner, A. Sasahara, Y. Liang, E.I. Altmann, H. Onishi: Formic acid adsorption on anatase TiO2(001)-(1 × 4) thin films studied by NC-AFM and STM, J. Phys. Chem. B 106, 8211–8222 (2002)

    Article  CAS  Google Scholar 

  80. A. Sasahara, T.C. Droubay, S.A. Chambers, H. Uetsuka, H. Onishi: Topography of anatase TiO2 film synthesized on LaAlO3(001), Nanotechnology 16, S18–S21 (2005)

    Article  CAS  Google Scholar 

  81. C.L. Pang, S.A. Haycock, H. Raza, P.J. Møller, G. Thornton: Structures of the 4 × 1 and 1 × 2 reconstructions of SnO2(110), Phys. Rev. B 62, R7775–R7778 (2000)

    Article  CAS  Google Scholar 

  82. H. Hosoi, K. Sueoka, K. Hayakawa, K. Mukasa: Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM, Appl. Surf. Sci. 157, 218–221 (2000)

    Article  CAS  Google Scholar 

  83. W. Allers, S. Langkat, R. Wiesendanger: Dynamic low-temperature scanning force microscopy on nickel oxide (001), Appl. Phys. A 72, S27–S30 (2001)

    Google Scholar 

  84. T. Kubo, H. Nozoye: Surface Structure of SrTiO3(100)-\( (\sqrt{5} \times \sqrt{5})-R 26.6^{\circ} \), Phys. Rev. Lett. 86, 1801–1804 (2001)

    Article  CAS  Google Scholar 

  85. K. Fukui, Y. Namai, Y. Iwasawa: Imaging of surface oxygen atoms and their defect structures on CeO2(111) by noncontact atomic force microscopy, Appl. Surf. Sci. 188, 252–256 (2002)

    Article  CAS  Google Scholar 

  86. S. Suzuki, Y. Ohminami, T. Tsutsumi, M.M. Shoaib, M. Ichikawa, K. Asakura: The first observation of an atomic scale noncontact AFM image of MoO3(010), Chem. Lett. 32, 1098–1099 (2003)

    Article  CAS  Google Scholar 

  87. C. Barth, C.R. Henry: Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy, Phys. Rev. Lett. 91, 196102/1–4 (2003)

    Article  CAS  Google Scholar 

  88. A.S. Foster, A.Y. Gal, J.M. Airaksinen, O.H. Pakarinen, Y.J. Lee, J.D. Gale, A.L. Shluger, R.M. Nieminen: Towards chemical identification in atomic-resolution noncontact AFM imaging with silicon tips, Phys. Rev. B 68, 195420/1–8 (2003)

    CAS  Google Scholar 

  89. A.S. Foster, A.Y. Gal, J.D. Gale, Y.J. Lee, R.M. Nieminen, A.L. Shluger: Interaction of silicon dangling bonds with insulating surfaces, Phys. Rev. Lett. 92, 036101/1–4 (2004)

    Article  CAS  Google Scholar 

  90. T. Eguchi, Y. Hasegawa: High resolution atomic force microscopic imaging of the Si(111)-(7 × 7) surface: Contribution of short-range force to the images, Phys. Rev. Lett. 89, 266105/1–4 (2002)

    Article  CAS  Google Scholar 

  91. T. Arai, M. Tomitori: A Si nanopillar grown on a Si tip by atomic force microscopy in ultrahigh vacuum for a high-quality scanning probe, Appl. Phys. Lett. 86, 073110/1–3 (2005)

    Article  CAS  Google Scholar 

  92. K. Mukasa, H. Hasegawa, Y. Tazuke, K. Sueoka, M. Sasaki, K. Hayakawa: Exchange interaction between magnetic moments of ferromagnetic sample and tip: Possibility of atomic-resolution images of exchange interactions using exchange force microscopy, Jpn. J. Appl. Phys. 33, 2692–2695 (1994)

    Article  CAS  Google Scholar 

  93. H. Ness, F. Gautier: Theoretical study of the interaction between a magnetic nanotip and a magnetic surface, Phys. Rev. B 52, 7352–7362 (1995)

    Article  CAS  Google Scholar 

  94. K. Nakamura, H. Hasegawa, T. Oguchi, K. Sueoka, K. Hayakawa, K. Mukasa: First-principles calculation of the exchange interaction and the exchange force between magnetic Fe films, Phys. Rev. B 56, 3218–3221 (1997)

    Article  CAS  Google Scholar 

  95. A.S. Foster, A.L. Shluger: Spin-contrast in non-contact SFM on oxide surfaces: Theoretical modeling of NiO(001) surface, Surf. Sci. 490, 211–219 (2001)

    Article  CAS  Google Scholar 

  96. T. Oguchi, H. Momida: Electronic structure and magnetism of antiferromagnetic oxide surface—First-principles calculations, J. Surf. Sci. Soc. Jpn. 26, 138–143 (2005)

    Article  CAS  Google Scholar 

  97. H. Hosoi, M. Kimura, K. Sueoka, K. Hayakawa, K. Mukasa: Non-contact atomic force microscopy of an antiferromagnetic NiO(100) surface using a ferromagnetic tip, Appl. Phys. A 72, S23–S26 (2001)

    Google Scholar 

  98. H. Hölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger: Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy, Appl. Phys. Lett. 81, 4428–4430 (2002)

    Article  CAS  Google Scholar 

  99. S.M. Langkat, H. Hölscher, A. Schwarz, R. Wiesendanger: Determination of site specific interaction forces between an iron coated tip and the NiO(001) surface by force field spectroscopy, Surf. Sci. 527, 12–20 (2003)

    Article  CAS  Google Scholar 

  100. R. Hoffmann, M.A. Lantz, H.J. Hug, P.J.A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Atomic resolution imaging and frequency versus distance measurement on NiO(001) using low-temperature scanning force microscopy, Phys. Rev. B 67, 085402/1–6 (2003)

    CAS  Google Scholar 

  101. H. Hosoi, K. Sueoka, K. Hayakawa, K. Mukasa: Atomically resolved imaging of a NiO(001) surface. In: Noncontact Atomic Force Microscopy, ed. by S. Morita, R. Wiesendanger, E. Meyer (Springer, Berlin, Heidelberg 2002) pp.125–134

    Google Scholar 

  102. K. Sueoka, A. Subagyo, H. Hosoi, K. Mukasa: Magnetic imaging with scanning force microscopy, Nanotechnology 15, S691–S698 (2004)

    Article  Google Scholar 

  103. H. Hosoi, K. Sueoka, K. Mukasa: Investigations on the topographic asymmetry of non-contact atomic force microscopy images of NiO(001) surface observed with a ferromagnetic tip, Nanotechnology 15, 505–509 (2004)

    Article  CAS  Google Scholar 

  104. H. Momida, T. Oguchi: First-principles studies of antiferromagnetic MnO and NiO surfaces, J. Phys. Soc. Jpn. 72, 588–593 (2003)

    Article  CAS  Google Scholar 

  105. K. Kobayashi, H. Yamada, T. Horiuchi, K. Matsushige: Structures and electrical properties of fullerene thin films on Si(111)-7 × 7 surface investigated by noncontact atomic force microscopy, Jpn. J. Appl. Phys. 39, 3821–3829 (2000)

    Google Scholar 

  106. T. Uchihashi, M. Tanigawa, M. Ashino, Y. Sugawara, K. Yokoyama, S. Morita, M. Ishikawa: Identification of B-form DNA in an ultrahigh vacuum by noncontact-mode atomic force microscopy, Langmuir 16, 1349–1353 (2000)

    Article  CAS  Google Scholar 

  107. R.M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Lüthi, L. Howald, H.-J. Güntherodt, M. Fujihira, H. Takano, Y. Gotoh: Friction measurements on phase-separated thin films with amodified atomic force microscope, Nature 359, 133–135 (1992)

    Article  CAS  Google Scholar 

  108. D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)

    Article  CAS  Google Scholar 

  109. E. Meyer, L. Howald, R.M. Overney, H. Heinzelmann, J. Frommer, H.-J. Guntherodt, T. Wagner, H. Schier, S. Roth: Molecular-resolution images of Langmuir–Blodgett films using atomic force microscopy, Nature 349, 398–400 (1992)

    Article  Google Scholar 

  110. K. Fukui, H. Onishi, Y. Iwasawa: Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy, Chem. Phys. Lett. 280, 296–301 (1997)

    Article  CAS  Google Scholar 

  111. K. Kobayashi, H. Yamada, T. Horiuchi, K. Matsushige: Investigations of C60 molecules deposited on Si(111) by noncontact atomic force microscopy, Appl. Surf. Sci. 140, 281–286 (1999)

    Article  CAS  Google Scholar 

  112. Y. Maeda, T. Matsumoto, T. Kawai: Observation of single- and double-strand DNA using non-contact atomic force microscopy, Appl. Surf. Sci. 140, 400–405 (1999)

    Article  CAS  Google Scholar 

  113. T. Uchihashi, T. Ishida, M. Komiyama, M. Ashino, Y. Sugawara, W. Mizutani, K. Yokoyama, S. Morita, H. Tokumoto, M. Ishikawa: High-resolution imaging of organic monolayers using noncontact AFM, Appl. Surf. Sci 157, 244–250 (2000)

    Article  CAS  Google Scholar 

  114. T. Fukuma, K. Kobayashi, T. Horiuchi, H. Yamada, K. Matsushige: Alkanethiol self-assembled monolayers on Au(111) surfaces investigated by non-contact AFM, Appl. Phys. A 72, S109–S112 (2001)

    Article  Google Scholar 

  115. B. Gotsmann, C. Schmidt, C. Seidel, H. Fuchs: Molecular resolution of an organic monolayer by dynamic AFM, Euro. Phys. J. B 4, 267–268 (1998)

    Article  CAS  Google Scholar 

  116. Ch. Loppacher, M. Bammerlin, M. Guggisberg, E. Meyer, H.-J. Güntherodt, R. Lüthi, R. Schlittler, J.K. Gimzewski: Forces with submolecular resolution between the probing tip and Cu-TBPP molecules on Cu(100) observed with a combined AFM/STM, Appl. Phys. A 72, S105–S108 (2001)

    Google Scholar 

  117. L.M. Eng, M. Bammerlin, Ch. Loppacher, M. Guggisberg, R. Bennewitz, R. Lüthi, E. Meyer, H.-J. Güntherodt: Surface morphology, chemical contrast, and ferroelectric domains in TGS bulk single crystals differentiated with UHV non-contact force microscopy, Appl. Surf. Sci. 140, 253–258 (1999)

    Article  CAS  Google Scholar 

  118. S. Kitamura, K. Suzuki, M. Iwatsuki: High resolution imaging of contact potential difference using a novel ultrahigh vacuum non-contact atomic force microscope technique, Appl. Surf. Sci. 140, 265–270 (1999)

    Article  CAS  Google Scholar 

  119. H. Yamada, T. Fukuma, K. Umeda, K. Kobayashi, K. Matsushige: Local structures and electrical properties of organic molecular films investigated by non-contact atomic force microscopy, Appl. Surf. Sci 188, 391–398 (2000)

    Article  Google Scholar 

  120. K. Fukui, Y. Iwasawa: Fluctuation of acetate ions in the (2 × 1)-acetate overlayer on TiO2(110)-(1 × 1) observed by noncontact atomic force microscopy, Surf. Sci. 464, L719–L726 (2000)

    Article  CAS  Google Scholar 

  121. A. Sasahara, H. Uetsuka, H. Onishi: Singlemolecule analysis by non-contact atomic force microscopy, J. Phys. Chem. B 105, 1–4 (2001)

    Article  CAS  Google Scholar 

  122. A. Sasahara, H. Uetsuka, H. Onishi: NC-AFM topography of HCOO and CH3COO molecules co-adsorbed on TiO2(110), Appl. Phys. A 72, S101–S103 (2001)

    Google Scholar 

  123. A. Sasahara, H. Uetsuka, H. Onishi: Image topography of alkyl-substituted carboxylates observed by noncontact atomic force microscopy, Surf. Sci. 481, L437–L442 (2001)

    Article  CAS  Google Scholar 

  124. A. Sasahara, H. Uetsuka, H. Onishi: Noncontact atomic force microscope topography dependent on permanent dipole of individual molecules, Phys. Rev. B 64, 121406(R) (2001)

    Article  CAS  Google Scholar 

  125. A. Sasahara, H. Uetsuka, T. Ishibashi, H. Onishi: A needle-like organic molecule imaged by noncontact atomic force microscopy, Appl. Surf. Sci. 188, 265–271 (2002)

    Article  CAS  Google Scholar 

  126. H. Onishi, A. Sasahara, H. Uetsuka, T. Ishibashi: Molecule-dependent topography determined by noncontact atomic force microscopy: Carboxylates on TiO2(110), Appl. Surf. Sci. 188, 257–264 (2002)

    Article  CAS  Google Scholar 

  127. S. Thevuthasan, G.S. Herman, Y.J. Kim, S.A. Chambers, C.H.F. Peden, Z. Wang, R.X. Ynzunza, E.D. Tober, J. Morais, C.S. Fadley: The structure of formate on TiO2(110) by scanned-energy and scanned-angle photoelectron diffraction, Surf. Sci. 401, 261–268 (1998)

    Article  CAS  Google Scholar 

  128. H. Onishi: Carboxylates adsorbed on TiO2(110). In: Chemistry of Nano-molecular Systems, ed. by T. Nakamura (Springer, Berlin, Heidelberg 2002) pp.75–89

    Google Scholar 

  129. H. Uetsuka, A. Sasahara, A. Yamakata, H. Onishi: Microscopic identification of a bimolecular reaction intermediate, J. Phys. Chem. B 106, 11549–11552 (2002)

    Article  CAS  Google Scholar 

  130. D.R. Lide: Handbook of Chemistry and Physics, 81th edn. (CRC, Boca Raton 2000)

    Google Scholar 

  131. K. Kobayashi, H. Yamada, K. Matsushige: Dynamic force microscopy using FM detection in various environments, Appl. Surf. Sci. 188, 430–434 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giessibl, F. et al. (2008). Noncontact Atomic Force Microscopy and Related Topics. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_4

Download citation

Publish with us

Policies and ethics