Skip to main content

Sequences for Phase-Encoded Optical CDMA

  • Conference paper
Sequences, Subsequences, and Consequences

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4893))

  • 628 Accesses

Abstract

In phase-encoded optical CDMA (OCDMA) spreading is achieved by encoding the phase of signal spectrum. Here, a mathematical model for the output signal of a phase-encoded OCDMA system is first derived. This is shown to lead to a performance metric for the design of spreading sequences for asynchronous transmission.

Generalized bent functions are used to construct a family of efficient phase-encoding sequences. It is shown how M-ary modulation of these spreading sequences is possible. The problem of designing efficient phase-encoded sequences is then related to the problem of minimizing PMEPR (peak-to-mean envelope power ratio) in an OFDM communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salehi, J.A.: Code division multiple-access techniques in optical fiber networks–part I: Fundamental principles. IEEE Trans. Commununication 37, 824–833 (1989)

    Article  Google Scholar 

  2. Weiner, A.M., Heritage, J.P., Salehi, J.A.: Encoding and decoding of femtosecond pulses. Opt. Lett. 13, 300–302 (1988)

    Article  Google Scholar 

  3. Salehi, J.A., Weiner, A.M., Heritage, J.P.: Coherent ultrashort light pulse code-division multiple access commuincation systems. IEEE Journal of Lightwave Tech. 8, 478–491 (1990)

    Article  Google Scholar 

  4. Chung, F., Salehi, J.A., Wei, V.K.: Optical orthogonal codes: Design, analysis, and applications. IEEE Trans. Information Theory 35, 595–604 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chung, H., Kumar, P.V.: Optical orthogonal codes – new bounds and an optimal construction. IEEE Trans. Information Theory 36, 866–873 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nguyen, Q.A., Györfi, L., Massey, J.L.: Constructions of binary constant-weight cyclic codes and cyclically permutable codes. IEEE Trans. Information Theory 38, 940–949 (1992)

    Article  MATH  Google Scholar 

  7. Moreno, O., Zhang, Z., Kumar, P.V., Zinoviev, V.: New constructions of optimal cyclically permutable constant weight codes. IEEE Trans. Information Theory 41, 448–455 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buratti, M.: A powerful method for constructing difference families and optimal optical orthogonal codes. Designs, Codes and Cryptography 5, 13–25 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ding, C., Xing, C.: Several classes of (2m − 1,w,2) optical orthogonal codes. Discrete Applied Mathematics 128, 103–120 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Miyamoto, N., Mizuno, H., Shinohara, S.: Optical orthogonal codes obtained from conics on finite projective planes. Finite Fields and Their Applications 10, 405–411 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Moreno, O., Omrani, R., Kumar, P.V., Lu, H.: A generalized Bose-Chowla family of optical orthogonal codes and distinct difference sets. IEEE Trans. Information Theory 53, 1907–1910 (2007)

    Article  MathSciNet  Google Scholar 

  12. Moreno, O., Omrani, R., Kumar, P.V.: New bounds on the size of optical orthogonal codes, and constructions. The IEEE Transactions on Information Theory (to be submitted)

    Google Scholar 

  13. Kavehrad, M., Zaccarin, D.: Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources. IEEE Journal of Lightwave Tech. 13, 534–545 (1995)

    Article  Google Scholar 

  14. Galli, S., Menendez, R., Toliver, P., Banwell, T., Jackel, J., Young, J., Etemad, S.: DWDM compatible spectrally phase encoded optical CDMA. In: Proc. Globecom Conf., pp. 1888–1894 (2004)

    Google Scholar 

  15. Hernandez, V.J., Du, Y., Cong, W., Scott, R.P., Li, K., Heritage, J.P., Ding, Z., Kolner, B.H., Yoo, S.J.B.: Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple-access for terabit optical access networks. IEEE Journal of Lightwave Tech. 22, 2671–2679 (2004)

    Article  Google Scholar 

  16. Etemad, S., Toliver, P., Menendez, R., Young, J., Banwell, T., Galli, S., Jackel, J., Delyett, P., Price, C., Turpin, T.: Spectrally efficient optical CDMA using coherent phase-frequency coding. IEEE Photon. Technol. Lett. 17, 929–931 (2005)

    Article  Google Scholar 

  17. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, golay complementary sequences, and Reed-Muller codes. IEEE Trans. Information Theory 465, 2397–2417 (1999)

    Article  MathSciNet  Google Scholar 

  18. Paterson, K.G., Tarokh, V.: On the existence and construction of good codes with low peak-to-average power ratios. IEEE Trans. Information Theory 46, 1974–1987 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paterson, K.G.: Sequences for OFDM and multi-code CDMA: Two problems in algebraic coding theory. In: Helleseth, T., Kumar, P.V., Yang, K. (eds.) SETA 2001, pp. 46–71. Springer, Heidelberg (2002)

    Google Scholar 

  20. Litsyn, S., Yudin, A.: Discrete and continuous maxima in multicarrier communication. IEEE Trans. Information Theory 51, 919–928 (2005)

    Article  MathSciNet  Google Scholar 

  21. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. Journal of Combinatorial Theory. Series A 40, 90–107 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stapleton, A., Shafiiha, R., Akhavan, H., Farrell, S., Peng, Z., Choi, S.J., Marshal, W., O’brien, J.D., Dapkus, P.D.: Experimental measurement of optical phase in microdisk resonators. In: IEEE/LEOS Summer Topical Meetings, pp. 54–57 (June 2004)

    Google Scholar 

  23. Stapleton, A., Farrell, S., Akhavan, H., Shafiiha, R., Peng, Z., Choi, S.J., Marshal, W., O’brien, J.D., Dapkus, P.D.: Optical phase characterization of active semiconductor microdisk resonators in transmission. Applied Physics Letters 88 (January 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Guang Gong Tor Helleseth Hong-Yeop Song

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Omrani, R., Bhambhani, P., Kumar, P.V. (2007). Sequences for Phase-Encoded Optical CDMA. In: Golomb, S.W., Gong, G., Helleseth, T., Song, HY. (eds) Sequences, Subsequences, and Consequences. Lecture Notes in Computer Science, vol 4893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77404-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77404-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77403-7

  • Online ISBN: 978-3-540-77404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics