Skip to main content

A Human-Like Robot Torso ZAR5 with Fluidic Muscles: Toward a Common Platform for Embodied AI

  • Chapter
50 Years of Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

Abstract

“Without embodiment artificial intelligence is nothing.” Algorithms in the field of artificial intelligence are mostly tested on a computer instead of testing on a real platform. Our anthropomorphic robot ZAR5 (in German Zwei-Arm-Roboter in the 5th version) is the first biologically inspired and completely artificial muscle driven robot torso that can be fully controlled by a data suit and two five finger data gloves. The underlying biological principles of sensor technology, signal processing, control architecture und actuator technology of our robot platform meet the requirements of biological based technical realization and support a distributed programming and control as well as an online self-adaptation and relearning processing. The following elaboration focuses on biological inspiration for the embodiment of artificial intelligence, gives a short insight into technical realisation of a humanoid robot, which is of high importance in this context, and accentuates highlights relating to a possible paradigm shift in artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. anon., Fluidic Muscle DMSP/MAS, FESTO AG & Co. KG (2005), https://xdki.festo.com/xdki/data/doc_de/pdf/de/mas_de.pdf

  2. BIOKON e.V., BIOKON - Competence in Bionics, What is Bionics? (2006), http://www.biokon.net/bionik/bionik.html.en

  3. Šurdiloviæ, D.T.: Synthesis of Robust Compliance Control Algorithms for Industrial Robots and Advanced Interaction Systems. In: Mechanical Engineering Faculty, University in Niš, p. 475 (2002)

    Google Scholar 

  4. Okada, M., Nakamura, Y., Ban, S.: Design of Programmable Passive Compliance Shoulder Mechanism. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea (2001)

    Google Scholar 

  5. Rocco, P., Ferretti, G., Magnani, G.: Implicit Force Control for Industrial Robots in Contact with Stiff Surfaces. Automatica 33(11), 2041–2047 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Pratt, G.A., et al.: Stiffness Isn’t Everything. Fourth International Symposium on Experimental Robotics. In: ISER 1995, p. 6 (1995)

    Google Scholar 

  7. Williamson, M.: Series Elastic Actuators. In: MIT Department of Electrical Engineering and Computer Science, p. 83 (1995)

    Google Scholar 

  8. Brooks, R., et al.: The Cog Project: Building a Humanoid Robot. In: Nehaniv, C.L. (ed.) Computation for Metaphors, Analogy, and Agents. LNCS (LNAI), vol. 1562, pp. 52–87. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Beira, R., et al.: Design of the Robot-Cub (iCub) Head. In: IEEE International Conference on Robotics and Automation, ICRA (2006)

    Google Scholar 

  10. Bar-Cohen, Y., Breazeal, C.: Cognitive Modeling for Biomimetic Robots. In: Biologically Inspired Intellilgent Robots, pp. 253–283. SPIE Press, Washington USA (2003)

    Google Scholar 

  11. anon., Shadow Dexterous Hand C5, Technical Specification, Shadow Robot Company (2006), http://www.shadowrobot.com/downloads/shadow_dextrous_hand_technical_specification_C5.pdf

  12. Boblan, I., et al.: A Human-like Robot Hand and Arm with Fluidic Muscles: Biologically Inspired Construction and Functionality. In: Iida, F., et al. (eds.) Embodied Artificial Intelligence, pp. 160–179. Springer, Heidelberg (2004)

    Google Scholar 

  13. Fenn, W.O., Marsh, B.S.: Muscular force at different speeds of shortening. Journal of physiology 85(3), 277–298 (1935)

    Google Scholar 

  14. Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarco-mere length in vertebrate muscle fibres. Journal of Physiology 184, 170–192 (1966)

    Google Scholar 

  15. Carlson, F.D., Wilkie, D.R.: Muscle Physiology. Prentice-Hall, Inc., Englewood Cliffs (1974)

    Google Scholar 

  16. Huxley, A.F.: Muscular Contraction. Journal of Physiology (London) 243, 1–43 (1974)

    Google Scholar 

  17. Neumann, R., Bretz, C., Volzer, J.: Ein Positionierantrieb mit hoher Kraft: Positions- und Druckregelung eines künstlichen pneumatischen Muskels. In: 4. Internationalen Fluidtechnischen Kolloquium, Dresden, p. 12 (2004)

    Google Scholar 

  18. Boblan, I., et al.: A Human-like Robot Hand and Arm with Fluidic Muscles: Modelling of a Muscle Driven Joint with an Antagonistic Setup. In: 3rd Int. Symposium on Adaptive Motion in Animals and Machines, Technische Universität Ilmenau, Germany (2005)

    Google Scholar 

  19. Caffaz, A., et al.: The DIST-Hand, an Anthropomorphic, Fully Sensorized Dexterous Gripper. In: IEEE Humanoids 2000. MIT, Boston, USA (2000)

    Google Scholar 

  20. Folgheraiter, M., Gini, G.: Blackfingers an artificial hand that copies human hand in structure, size, and function. In: Proc. IEEE Humanoids 2000, p. 4. MIT, Cambridge (2000)

    Google Scholar 

  21. Fukaya, N., et al.: Design of the TUAT/Karlsruhe Humanoid Hand, Karlsruhe, p. 6 (2000)

    Google Scholar 

  22. Casalino, G., et al.: Dexterous Object Manipulation via Integrated Hand-Arm Systems. In: IEEE Humanoids 2001, Tokyo, Japan (2001)

    Google Scholar 

  23. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II. IEEE/ASME Transactions on Mechatronics 7(3), 296–303 (2002)

    Article  Google Scholar 

  24. Osswald, D., et al.: Integrating a Flexible Anthropomorphic Robot Hand into the Control System of a Humanoid Robot. In: Proc. of the Int. Conf. on Humanoid Robots, p. 12 (2003)

    Google Scholar 

  25. Northrup, S., Sarkar, N., Kawamura, K.: Biologically-Inspired Control Architecture for a Humanoid Robot, Center for Intelligent Systems, Nashville, Vanderbilt University, TN 37235. p. 6

    Google Scholar 

  26. Folgheraiter, M., Gini, G.: A bio-inspired control system and a VRML Simulator for an Autonomous Humanoid Arm. p. 16

    Google Scholar 

  27. Folgheraiter, M., Gini, G.: Human-Like Hierarchical Reflex Control for an Artificial Hand. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robots, p. 8 (2001)

    Google Scholar 

  28. Williamson, M.: Robot Arm Control Exploiting Natural Dynamics. In: MIT Department of Electrical Engineering and Computer Science, p. 192 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boblan, I., Bannasch, R., Schulz, A., Schwenk, H. (2007). A Human-Like Robot Torso ZAR5 with Fluidic Muscles: Toward a Common Platform for Embodied AI. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics