Skip to main content

Unbounded-Error Classical and Quantum Communication Complexity

  • Conference paper
Algorithms and Computation (ISAAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Included in the following conference series:

Abstract

Since the seminal work of Paturi and Simon [26,FOCS’84 & JCSS’86], the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, [14, ICALP’07] found that the unbounded-error quantum communication complexity in the one-way communication model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the two-way and simultaneous message passing (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for any partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between weakly unbounded-error quantum and classical communication complexities is at most a factor of three.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Frankl, P., Rödl, V.: Geometrical realization of set systems and probabilistic communication complexity. In: Proc. 26th FOCS, pp. 277–280 (1985)

    Google Scholar 

  2. Ambainis, A., Nayak, A., Ta-shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002)

    Article  MathSciNet  Google Scholar 

  3. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity. In: Proc. 27th FOCS, pp. 303–312 (1986)

    Google Scholar 

  4. Babai, L., Kimmel, P.: Randomized simultaneous messages: solution of a problem of Yao in communication complexity. In: Proc. 12th CCC, pp. 239–246 (1997)

    Google Scholar 

  5. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87 Article no. 167902 (2001)

    Google Scholar 

  6. Buhrman, H., Vereshchagin, N., de Wolf, R.: On computation and communication with small bias. In: Proc. 22nd CCC, pp. 24–32 (2007)

    Google Scholar 

  7. Buhrman, H., de Wolf, R.: Communication Complexity Lower Bounds by Polynomials. In: Proc. 16th CCC, pp. 120–130, Also, cs.CC/9910010 (2001)

    Google Scholar 

  8. Forster, J.: A linear lower bound on the unbounded error probabilistic communication complexity. J. Comput. Syst. Sci. 65, 612–625 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Forster, J., Krause, M., Lokam, S.V., Mubarakzjanov, R., Schmitt, N., Simon, H.U.: Relations between communication complexity, linear arrangements, and computational complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FST TCS 2001: Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 2245, pp. 171–182. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Forster, J., Simon, H.U.: On the smallest possible dimension and the largest possible margin of linear arrangements representing given concept classes. Theoret. Comput. Sci. 350, 40–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential separations for one-way quantum communication complexity, with applications to cryptography. In: Proc. 39th STOC, pp. 516–525, Also, quant-ph/0611209 (2007)

    Google Scholar 

  12. Gavinsky, D., Kempe, J., Regev, O., de Wolf, R.: Bounded-error quantum state identification and exponential separations in communication complexity. In: Proc. 38th STOC, pp. 594–603 (2006)

    Google Scholar 

  13. Gavinsky, D., Kempe, J., de Wolf, R.: Strengths and weaknesses of quantum fingerprinting. In: Proc. 21st CCC, pp. 288–298 (2006)

    Google Scholar 

  14. Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: Unbounded-error one-way classical and quantum communication complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 110–121. Springer, Heidelberg (2007) Also, quant-ph/0706.3265

    Google Scholar 

  15. Jakóbczyk, L., Siennicki, M.: Geometry of Bloch vectors in two-qubit system. Phys. Lett. A 286, 383–390 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kimura, G., Kossakowski, A.: The Bloch-vector space for N-level systems – the spherical-coordinate point of view. Open Sys. Information Dyn. 12, 207–229 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klauck, H.: Lower bounds for quantum communication complexity. SIAM J. Comput. 37, 20–46 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur? In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 189–198. Springer, Heidelberg (2003)

    Google Scholar 

  19. Kossakowski, A.: A class of linear positive maps in matrix algebras. Open Sys. Information Dyn. 10, 213–220 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kremer, I.: Quantum Communication. Master’s Thesis, The Hebrew Univ. of Jerusalem (1995)

    Google Scholar 

  21. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge (1997)

    Google Scholar 

  22. Linial, N., Shraibman, A.: Learning complexity vs. communication complexity (2006), Manuscript Available at http://www.cs.huji.ac.il/~nati/

  23. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. In: Proc. 39th STOC, pp. 699–708 (2007)

    Google Scholar 

  24. Newman, I., Szegedy, M.: Public vs. private coin flips in one-round communication games. In: Proc. 28th STOC, pp. 561–570 (1996)

    Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge (2000)

    Google Scholar 

  26. Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput. Syst. Sci. 33, 106–123 (1986) Preliminary version appeared in Proc. 25th FOCS, pp. 118–126 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Raz, R.: Exponential separation of quantum and classical communication complexity. In: Proc. 31st STOC, pp. 358–367 (1999)

    Google Scholar 

  28. Sherstov, A.: Halfspace matrices. In: Proc. 22nd CCC, pp. 83–95 (2007)

    Google Scholar 

  29. de Wolf, R.: Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32, 681–699 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yao, A.C.-C.: Quantum circuit complexity. In: Proc. 34th FOCS, pp. 352–360 (1993)

    Google Scholar 

  31. Yao, A.C.-C.: On the power of quantum fingerprinting. In: Proc. 35th STOC, pp. 77–81 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iwama, K., Nishimura, H., Raymond, R., Yamashita, S. (2007). Unbounded-Error Classical and Quantum Communication Complexity. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics