Skip to main content

Kinetic Derivation for a Traffic Flow Model

  • Conference paper
Traffic and Granular Flow ’07

Summary

A macroscopic traffic model for aggressive drivers is developed from a kinetic equation by means of a maximization procedure and Grad’s method. The macroscopic equations thus obtained contain a kind a of viscosity effect as well as density gradients. An stability analysis is developed and stable regions are observed. The simulation results are shown for one initial condition and they are in general agreement with traffic flow characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helbing D (2001) Rev. Mod. Phys. 73:1067–1141.

    Article  Google Scholar 

  2. Chowdhury D, Santen L, Schadschneider A (2000) Phys. Rep. 329:199–329.

    Article  MathSciNet  Google Scholar 

  3. Paveri-Fontana S L (1975) Transp. Res. 9:225–235.

    Article  Google Scholar 

  4. Wagner C (1998) J. Stat. Phys. 90:1251–1275.

    Article  MATH  Google Scholar 

  5. Helbing D (1996) Phys. Rev. E 53:2366–2381.

    Article  MathSciNet  Google Scholar 

  6. Wagner C, Hoffmann C, Sollacher R, Wagenhuber J, Schürmann B (1996) Phys. Rev. E 54:5073–5085.

    Article  Google Scholar 

  7. Helbing D, Treiber M (1998) Granular Matter 1:21–31.

    Article  Google Scholar 

  8. Velasco R M, Marques Jr (2005) Phys. Rev. E 72:046102.

    Article  MathSciNet  Google Scholar 

  9. Velasco R M, Saavedra P Physica D 228:153–158.

    Google Scholar 

  10. Velasco R M, Méndez A R (2005) The informational entropy in traffic flow. In: Statistical Physics and Beyond: 2nd Mexican Meeting on Mathematical and Experimental Physics, Uribe F J, García Colín L S, Díaz-Herrera E (eds) AIP Conference Proceedings 757, New York.

    Google Scholar 

  11. Grad H (1949) Commun. Pure & Appl Math 2:325–330.

    Article  MathSciNet  Google Scholar 

  12. Shvetsov V, Helbing D (1999) Phys. Rev. E 59:6328.

    Article  Google Scholar 

  13. Shannon C E (1984) Bell System Tech J. 27:379–623.

    MathSciNet  Google Scholar 

  14. Helbing D (1998) arXiv:cond-mat/9805136v1.

  15. Helbing D, Treiber M (1999) Comp. Sci. & Eng. Sept-Oct:89–99.

    Google Scholar 

  16. Press W H, Teukolsky S A, Vetterling W T, Flannery B P (1992) Numerical Recipes: The art of Scientific Computing. Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cécile Appert-Rolland François Chevoir Philippe Gondret Sylvain Lassarre Jean-Patrick Lebacque Michael Schreckenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Méndez, A.R., Velasco, R.M. (2009). Kinetic Derivation for a Traffic Flow Model. In: Appert-Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, JP., Schreckenberg, M. (eds) Traffic and Granular Flow ’07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77074-9_20

Download citation

Publish with us

Policies and ethics