Skip to main content

Hadronic Interactions and Cascades

  • Chapter
Extensive Air Showers
  • 1210 Accesses

Overview

After a brief introduction we discuss the hadronic cross sections for interactions that are of relevance for air shower and ultrahigh energy physics research, such as cross sections and the corresponding interaction mean free paths of nucleons, pions and nuclei on protons, air and other target nuclei that are encountered in cosmic ray experiments. Their energy dependence is summarized, accelerator and collider data are presented together with the results from cosmic ray and air shower experiments over the entire experimentally accessible energy range up to ~ 1019 eV. These topics are followed by a discussion of the projectile and target fragmentation at very high energies and of the basic properties of hadronic interactions, including particle production, secondary particle multiplicity, the nature of the secondaries, kinematic aspects of secondaries, longitudinal and transverse momenta, the phenomenon of large transverse momenta, the leading particle effect, elasticity/inelasticity of hadronic interactions, and correlations among the different observables. Subsequently a large variety of hadronic interaction models are discussed. Some emphasis is given to the early phenomenological-mathematical models that are scarcely documented and difficult to find in the literature, but played a relevant role initially to guide new pioneering experiments. A brief summary of the fast growing number of new models is given in the form of a catalogue, giving some emphasis on the currently relevant so-called event generators. The final part of this chapter is devoted to hadron cascades, outlining the analytical treatment of the problem and the Monte Carlo method for three- and four-dimensional cascade simulations (in space and time). The latter topic is treated in detail in Chap. 20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Approximately 2.2 GeV are dissipated per 1,000 g cm−2 of air traversed by a relativistic muon.

  2. 2.

    Nuclear emulsion is applicable up to ∼100 TeV. In some cases it had been used at mountain altitude as detector under LiH and carbon targets.

  3. 3.

    The author is grateful to Prof. Larry Jones for having called his attention to this significant difference.

  4. 4.

    Glauber theory of hadron–nucleus interactions had been used successfully for many years, yet it is the high energy limit of non-relativistic scattering theory and in fact not valid in the relativistic domain.

  5. 5.

    Caution must be taken when comparing data from different experiments with unaccompanied cosmic rays as the definition of the term “unaccompanied” (within a certain radius) varies from experiment to experiment.

  6. 6.

    According to Lindstrom et al. (1973) the partial cross section for the production of a particular fragment produced in a nucleus–nucleus collision depends strongly on the nature of the target nucleus, but the relative proportions of different fragments are not strongly target dependent.

  7. 7.

    A similar rise of the production cross section of strange particles, including hyperons was also observed at CERN \(\overline{p}p\), Tevatron and RHIC experiments.

  8. 8.

    We disregard here the comparatively rare occasional large transverse momentum events that are discussed below.

  9. 9.

    Cocconi et al. (1966) in their work used a value of \(2p_{0} \simeq 0.36\;\textrm{GeV/c}\).

  10. 10.

    See Eqs. (3.44) and (3.60), respectively, for definition.

  11. 11.

    See Chap. 21 for definitions.

  12. 12.

    At that time Minkowski predicted on the basis of QCD the existence of jets, direct gamma rays and lepton pairs with large transverse momenta that should exhibit a relatively flat distribution that goes asymptotically as p t −4 (Minkowski, 1973, private communication; Fritzsch and Minkowski, 1977).

  13. 13.

    For an early review see Feinberg (1972), and references listed therein.

  14. 14.

    It should be noted that in about 25% of all proton–nucleus interactions the most energetic hadron is a neutron (Jones, 1982).

  15. 15.

    Rough estimates are possible on the basis of the number of heavy tracks.

  16. 16.

    The charge Z can usually be determined but the problem is to distinguish minimum ionizing particles such as charged pions from protons, etc.

  17. 17.

    The only high energy cosmic ray experiment where a liquid hydrogen (H2) target had been used was the well known Echo Lake experiment (Jones et al., 1970, 1972).

  18. 18.

    So far no Centauro type events (Lattes et al., 1973; Bellandi et al., 1979) have been discovered in machine experiments (Alner et al., 1987) and neither so-called co-planar (co-linear) events (Slavatinski, 2003), nor the long flying component (Dremin et al., 1990; Yakovlev, 2003, 2005; Dremin and Yakovlev, 2006). Recently, Centauro-I had been re-analyzed by Ohsawa et al. (2004, 2006). A flaw in the initial scanning procedure had been discovered but the essential result, the unique gamma ray deficit, remains.

  19. 19.

    Large p t phenomena were unknown at that time.

  20. 20.

    In some cases the reconstruction of an event suggested a single emission center.

  21. 21.

    This model was actually first studied by Fermi (1950, 1951, 1953, 1954), Heisenberg (1949a, b), Landau and Pomeranchuk (1953a, b), and Belenkii and Landau (1956).

  22. 22.

    In the initial formulation of the CKP model it was assumed that all secondaries are pions.

  23. 23.

    For deeper insight the interested reader is referred to the books of Khristiansen (1980); Gaisser (1992), Rao and Sreekantan (1998), and references listed therein.

  24. 24.

    For details see the brief historical overview given in Sect. 4.6.

References

  • Aarnio, P.A., et al.: CERN-TIS-RP-190, CERN, Geneva (1987).

    Google Scholar 

  • Abe, F., et al.: Phys. Rev. Lett., 61, p. 1819 (1988).

    ADS  Google Scholar 

  • Abe, F., et al.: Phys. Rev. D, 41, p. 2330 (1990). (same author list as Abe et al., 1988).

    ADS  Google Scholar 

  • Adamus, M., et al.: Phys. Lett. B, 177, p. 239 (1986).

    ADS  Google Scholar 

  • Adler, C., et al., STAR Collaboration: Phys. Rev. Lett., 87, p. 262302 (2001).

    ADS  Google Scholar 

  • Aglietta, M., et al.: PICRC, 6, p. 37 (1997).

    Google Scholar 

  • Aglietta, M., et al.: Nucl. Phys., B (Proc. Suppl.), 75A, p. 222 (1999).

    ADS  Google Scholar 

  • Aglietta, M., et al.: Phys. Rev. D, 79, p. 032004 (2009).

    ADS  Google Scholar 

  • Agostinelli, S., et al.: Nucl. Instr. Meth. A, 506, No. 3, p. 250 (2003).

    ADS  Google Scholar 

  • Aguilar-Benitez, M., et al.: Zeitschr. Phys. C, 50, p. 405 (1991).

    Google Scholar 

  • Ahle, L., et al., E-802 Collaboration: Phys. Rev. Lett., 81, p. 2650 (1998).

    ADS  Google Scholar 

  • Aiginger, H., et al.: Adv. Space Res., 35, 214 (2005).

    ADS  Google Scholar 

  • Akashi, M., et al.: PICRC, 2, p. 835 (1965a).

    Google Scholar 

  • Akashi, M., et al.: Progr. Theor. Phys., (Suppl.), 32, p. 1 (1965b).

    ADS  Google Scholar 

  • Akimov, V.V., et al.: Acta Phys. Acad. Sci. Hung., 29, S3, p. 211 (1970).

    Google Scholar 

  • Alexopoulos, T., et al.: Phys. Rev. D, 48, p. 984 (1993).

    MathSciNet  ADS  Google Scholar 

  • Allison, J., et al.: Manchester University, UK; IEEE Trans. Nucl. Sci., 53, No. 1, p. 270 (2006).

    ADS  Google Scholar 

  • Alner, G.J., et al.: Zeitschr. Phys. C, p. 1 (1986).

    Google Scholar 

  • Alner, G.J., et al., UA5 Collaboration: Phys. Rep., 154, pp. 247–383 (1987).

    ADS  Google Scholar 

  • Alper, B., et al.: Phys. Lett. B, 44, p. 521 (1973).

    ADS  Google Scholar 

  • Amaldi, U., et al.: Phys. Lett. B, 44, p. 112 (1973).

    ADS  Google Scholar 

  • Amati, D., et al.: Nuovo Cim., 26, p. 896 (1962).

    MathSciNet  Google Scholar 

  • Amendolia, S.R., et al.: Phys. Lett. B, 44, p. 119 (1973).

    ADS  Google Scholar 

  • Ammar, R., et al.: Phys. Lett. B, 178, p. 124 (1986).

    ADS  Google Scholar 

  • Andersson, B., et al.: Phys. Rep., 97, p. 31 (1983).

    ADS  Google Scholar 

  • Anisovich, V.V., et al.: Zeitschr. Phys. C, 27, p. 77 (1985).

    ADS  Google Scholar 

  • Antoni, T., et al.: Nucl. Instr. Meth. A, 513, p. 490 (2003).

    ADS  Google Scholar 

  • Ashton, F., and R.B. Coats: J. Phys. A, 1, p. 169 (1968).

    ADS  Google Scholar 

  • Ashton, F., et al.: Acta Phys. Acad. Sci. Hung., 29, S3, p. 25 (1970).

    Google Scholar 

  • Astafiev, V.A., and R.A. Mukhamedshin: PICRC, 7, p. 204 (1979).

    Google Scholar 

  • Atherton, H.W., et al.: CERN Yellow Report, CERN 80-07, (22 August 1980).

    Google Scholar 

  • Babecki, J.: Acta Phys. Polonica B, 6, p. 443 (1975).

    Google Scholar 

  • Bächler, J., et al., NA49 Collaboration: Nucl. Phys. A, 661, p. 45c (1999).

    Google Scholar 

  • Badhwar, G.D., et al.: Proc. Ind. Acad. Sci., 61, p. 374 (1965).

    Google Scholar 

  • Bailly, J.L., et al.: Zeitschr. Phys. C, 35, p. 301 (1987).

    ADS  Google Scholar 

  • Ballarini, F., et al.: AIP Conf. Proc. 769, p. 1197 (2005).

    ADS  Google Scholar 

  • Baltrusaitis, R.M., et al.: Phys. Rev. Lett., 52, p. 1380 (1984).

    ADS  Google Scholar 

  • Banner, M., et al.: Phys. Lett. B, 44, p. 537 (1973).

    ADS  Google Scholar 

  • Baradzei, L.T., et al.: Nucl. Phys. B, 370, p. 365 (1992).

    ADS  Google Scholar 

  • Bardadin-Otwinowska, M., et al.: Phys. Lett., 21, p. 351 (1966).

    ADS  Google Scholar 

  • Barroso, S.L.C., et al.: PICRC, 6, p. 41 (1997).

    Google Scholar 

  • Barshay, S., and Y. Chiba: Phys. Lett. B, 167, p. 449 (1986).

    ADS  Google Scholar 

  • Basile, M., et al.: Phys. Lett., B, 95, p. 311 (1980).

    ADS  Google Scholar 

  • Basile, M., et al.: Nuovo Cim., A, 65, p. 400 (1981a).

    ADS  Google Scholar 

  • Basile, M., et al.: Lett. Nuovo Cim., 32, p. 321 (1981b).

    Google Scholar 

  • Basile, M., et al.: Lett. Nuovo C., A, 73, p. 329 (1983).

    Google Scholar 

  • Bass, S.A., et al.: Progr. Part. Nucl. Phys., 41, p. 255 (1998).

    ADS  Google Scholar 

  • Bass, S.A., et al.: Nucl. Phys. A, 661, pp. 205c–260c (1999).

    ADS  Google Scholar 

  • Batista, M., and R.J.M. Covolan: Phys. Rev. D, 59, 054006(1999).

    ADS  Google Scholar 

  • Battistoni, G., et al.: Astropart. Phys., 19, p. 269 (2003a).

    ADS  Google Scholar 

  • Battistoni, G., et al.: Astropart. Phys., 19, p. 291 (2003b). Erratum to Battistoni et al. (2003a).

    ADS  Google Scholar 

  • Battistoni, G., et al.: hep-ph/0412178 (14 December 2004).

    Google Scholar 

  • Belenkii, S.Z., and L. Landau: Nuovo Cim., 1, p. 15 (1956).

    Google Scholar 

  • Bellandi Filho, J., et al.: Cosmic Rays and Particle Physics-1978 (Bartol Conference) T.K. Gaisser, ed., American Institute of Physics, A.I.P. Conference Proceedings, 49, Particles and Fields Subseries, 16, p. 317 (1979).

    Google Scholar 

  • Bellandi, J., et al.: Nuovo Cim. A, 101, p. 897 (1989).

    ADS  Google Scholar 

  • Bellandi, J., et al.: J. Phys. G, 18, p. 579 (1992a).

    MathSciNet  ADS  Google Scholar 

  • Bellandi, J., et al.: Phys. Lett. B, 279, p. 149 (1992b).

    ADS  Google Scholar 

  • Bellandi, J., et al.: Nuovo Cim. A, 107, p. 1339 (1994a).

    ADS  Google Scholar 

  • Bellandi, J., et al.: Phys. Rev., D, 50, p. 6836 (1994b).

    ADS  Google Scholar 

  • Bellandi, J., et al.: Nuovo Cim. A, 111, p. 149 (1998).

    ADS  Google Scholar 

  • Bellettini, G., et al.: Phys. Lett. B, 45, p. 69 (1973).

    ADS  Google Scholar 

  • Belov, K., et al.: Nucl. Phys., B (Proc. Suppl.), 151, p. 197 (2006).

    Google Scholar 

  • Benecke, J., et al.: Phys. Rev., 188, p. 2159 (1969).

    ADS  Google Scholar 

  • Bleicher, M., et al.: J. Phys., G, 25, p. 1859 (1999).

    ADS  Google Scholar 

  • Block, M.M.: Phys. Rep., 436, p. 71 (2006).

    ADS  Google Scholar 

  • Bøggild, H., and T. Ferbel: Ann. Rev. Nucl. Sci., 24, p. 451 (1974).

    ADS  Google Scholar 

  • Bossard, G., et al.: Phys. Rev. D, 63, p. 054030 (2001).

    ADS  Google Scholar 

  • Brenner, A.E., et al.: Phys. Rev. D, 26, p. 1497 (1982).

    ADS  Google Scholar 

  • Brooke, G., et al.: Proc. Phys. Soc., 83, p. 853 (1964).

    ADS  Google Scholar 

  • Brun, R., et al.: Computer Code GEANT3, CERN Report No. DD/EE/84-1 (1987).

    Google Scholar 

  • Büsser, F.W., et al.: Phys. Lett. B, 46, p. 471 (1973).

    ADS  Google Scholar 

  • Busza, W., et al.: Phys. Rev. Lett., 34, p. 836 (1975).

    ADS  Google Scholar 

  • Capdevielle, J.N.: J. Phys. G, 15, p. 909 (1989).

    ADS  Google Scholar 

  • Capdevielle, J.N., et al.: The Karlsruhe Extensive Air Shower Simulation Code CORSIKA. Kernforschungszentrum Karlsruhe, Report KfK 4998, (November 1992).

    Google Scholar 

  • Capdevielle, J.N., et al.: J. Phys. G, 20, p. 947 (1994).

    ADS  Google Scholar 

  • Capella, A., and A. Krzywicki: Phys. Rev. D, 18, p. 3357 (1978).

    MathSciNet  ADS  Google Scholar 

  • Capella, A., and J. Tran Thanh Van: Zeitschr. Phys. C, 10, p. 249 (1981).

    ADS  Google Scholar 

  • Capella, A., et al.: Phys. Rep., 236, p. 225 (1994).

    ADS  Google Scholar 

  • Carroll, A.S., et al.: Phys. Rev. Lett., 33, p. 928 (1974a).

    ADS  Google Scholar 

  • Carroll, A.S., et al.: Phys. Rev. Lett., 33, p. 932 (1974b).

    ADS  Google Scholar 

  • Caso, C., et al.: Europ. Phys. J. C, 3, p. 1 (1998).

    Google Scholar 

  • Castagnoli, C., et al.: Nuovo Cim., 10, p. 1539 (1953).

    MATH  Google Scholar 

  • Ceradini, F.: Proceedings of the International Europhysics Conference on High Energy Physics, Bari, Italy, p. 363 (18–24 July 1985).

    Google Scholar 

  • CERN W-5013: Detector Description and Simulation Tool, CERN Program Library Long Write-up W5013 (CERN Geneva) (1993).

    Google Scholar 

  • CERN W-5013: Application Software Group and Network Division. GEANT. Detector Description and Simulation Tool 3.21 (1994).

    Google Scholar 

  • Chou, T.T., and C.N. Yang: Phys. Rev. Lett., 25, p. 1072 (1970).

    ADS  Google Scholar 

  • Ciok, P., et al.: Nuovo Cim., 8, p. 166 (1958).

    Google Scholar 

  • Cleghorn, T.F., et al.: Can. J. Phys., 46, p. S572 (1968).

    ADS  Google Scholar 

  • Cocconi, G.: Phys. Rev., 111, p. 1699 (1958).

    ADS  Google Scholar 

  • Cocconi, G.: Handbuch der Physik, S. Flügge, ed., Kosmische Strahlung, Springer Verlag, Berlin, Vol. XLVI/I, p. 215 (1961).

    Google Scholar 

  • Cocconi, G., et al.: UCRL, 10022, p. 167 (1961). Cocconi, G., et al.: LRL 28, Part 2, VCID-144, (1962).

    Google Scholar 

  • Cocconi, G., et al.: In 200 BeV Accelerator: Studies on Experimental Use, 1964–1965, Lawrence Radiation Laboratory Report UCRL-16830, Vol. 1, p. 25 (1966).

    Google Scholar 

  • Cocconi, G.: Nucl. Phys. B, 28, p. 341 (1971).

    ADS  Google Scholar 

  • CORSIKA: http://www-ik.fzk.de/corsika/

  • Costa, C.G.S., et al.: Phys. Rev., D, 52, p. 3890 (1995).

    ADS  Google Scholar 

  • Costa, C.G.S., et al.: Phys. Rev., D, 54, p. 5558 (1996).

    ADS  Google Scholar 

  • Costa, C.G.S.: Phys. Rev. D, 57, p. 4361 (1998).

    ADS  Google Scholar 

  • Covolan, R.J.M., et al.: Phys. Lett. B, 389, p. 176 (1996).

    ADS  Google Scholar 

  • De Angelis, A.: Proceedings of the XXVI International Symposium on Multiparticle Dynamics, Faro (1996).

    Google Scholar 

  • De Mitri, I, et al.: PICRC, Merida, Mexico 2007, 4, p. 675 (2008).

    Google Scholar 

  • Dekhissi, H., et al.: PICRC, 1, p. 1 (1999).

    ADS  Google Scholar 

  • Denisov, S.P., et al.: Nucl. Phys., B, 61, p. 62 (1973).

    ADS  Google Scholar 

  • Dias de Deus, J.: Phys. Rev. D, 32, p. 2334 (1985).

    ADS  Google Scholar 

  • Ding, L., and Q. Zhu: Phys. Lett. B, 297, p. 201 (1992).

    MathSciNet  Google Scholar 

  • Donnachie, A., and P.V. Landshoff: Phys. Lett. B, 296, p. 227 (1992).

    ADS  Google Scholar 

  • Dremin, I.M., et al.: PICRC, 10, p. 166 (1990).

    Google Scholar 

  • Dremin, I.M., and V.I. Yakovlev: Astropart. Phys., 26, p. 1 (2006).

    ADS  Google Scholar 

  • Drescher, H.J.: in Bass et al. (1999); Nucl. Phys. A, 661, p. 216c (1999).

    Google Scholar 

  • Drescher, H.J., et al.: Nucl. Phys. A, 661, p. 604c (1999).

    ADS  Google Scholar 

  • Drescher, H.J., et al.: Phys. Rep., 350, p. 93 (2001).

    ADS  MATH  Google Scholar 

  • Duller, N., and W. Walker: Phys. Rev., 93, p. 215 (1954).

    ADS  Google Scholar 

  • Dunaevsky, A.M., et al.: PICRC, 4, p. 133 (1991a).

    Google Scholar 

  • Dunaevsky, A.M., et al.: PICRC, 4, p. 161 (1991b).

    Google Scholar 

  • Durães, F.O., et al.: Phys. Rev. D, 47, p. 3049 (1993).

    ADS  Google Scholar 

  • Dyakonov, M.N., et al.: PICRC, 9, p. 252 (1990).

    Google Scholar 

  • Engel, J., et al.: Phys. Rev., D, 46, p. 5013 (1992).

    ADS  Google Scholar 

  • Engel, R., et al.: PICRC, 1, p. 415 (1999).

    MathSciNet  ADS  Google Scholar 

  • Engel, R.: PICRC, Invited, Rapporteur, and Highlight papers, p. 181 (2001).

    Google Scholar 

  • Engel, R.: Nucl. Phys. B (Proc. Suppl.), 122, p. 40 (2003).

    ADS  Google Scholar 

  • Engel, R.: Nucl. Phys. B (Proc. Suppl.), 151, p. 437 (2006).

    MathSciNet  ADS  Google Scholar 

  • Engler, J., et al.: Nucl. Instr. Meth. A, 427, p. 528 (1999).

    ADS  Google Scholar 

  • Eskola, K.J.: Nucl. Phys. A, 698, p. 78c (2002).

    ADS  Google Scholar 

  • Fassò, A., et al., Proc. Monte Carlo 2000 Conf., Lisbon, Oct. 23–26 2000, A. Kling et al. Eds.: Springer Verlag Berlin, pp. 159, p. 955 (2001).

    Google Scholar 

  • Feinberg, E.L.: Phys. Rep., 5, p. 237 (1972).

    ADS  Google Scholar 

  • Fermi, E.: Progr. Theor. Phys. (Kyoto), 5, p. 570 (1950).

    MathSciNet  ADS  Google Scholar 

  • Fermi, E.: Phys. Rev., 81, p. 683 (1951).

    ADS  MATH  Google Scholar 

  • Fermi, E.: Phys. Rev., 92, p. 452 (1953).

    ADS  Google Scholar 

  • Fermi, E.: Phys. Rev., 93, p. 1434 (1954).

    ADS  Google Scholar 

  • Fesefeldt, H.: PITHA 85/02, RWTH Aachen (1985).

    Google Scholar 

  • Feynman, R.P.: Phys. Rev. Lett., 23, p. 1415 (1969).

    ADS  Google Scholar 

  • Fishbane, P.M., and J.S. Trefil: Phys. Rev. D, 3, p. 238 (1971).

    ADS  Google Scholar 

  • Fishbane, P.M., and J.S. Trefil: Phys. Rev. Lett., 31, p. 734 (1973).

    ADS  Google Scholar 

  • Fletcher, R.S., et al.: Phys. Rev. D, 50, p. 5710 (1994).

    ADS  Google Scholar 

  • FLUKA code (event-generator), http://www.fluka.org/ (2006)

  • Foà, L.: Phys. Rep., 22, p. 1 (1975).

    ADS  Google Scholar 

  • Fowler, G.N., et al.: Phys. Lett. B, 145, p. 407 (1984).

    MathSciNet  ADS  Google Scholar 

  • Fowler, G.N., et al.: Phys. Rev. Lett., 55, p. 173 (1985).

    ADS  Google Scholar 

  • Fowler, G.N., et al.: Phys. Rev., 35, D, p. 870 (1987).

    ADS  Google Scholar 

  • Fowler, G.N., et al.: Phys. Rev., 40, C, p. 1219 (1989).

    ADS  Google Scholar 

  • Fowler, P.H., and D.H. Perkins: Proc. R. Soc. A, 278, p. 401 (1964).

    ADS  Google Scholar 

  • Freier, Ph. and C.J. Waddington: Astrophys. Space Sci., 38, p. 419 (1975).

    ADS  Google Scholar 

  • Friedlander, M.W., et al.: Phil. Mag., 8, p. 1691 (1963).

    ADS  Google Scholar 

  • Fritzsch, H., and P. Minkowski: CERN Report, CERN-TH-2320, May (1977) and Phys. Lett. B, 69, p. 316 (1977).

    Google Scholar 

  • Fukushima, Y., et al.: Phys. Rev., D, 39, p. 1267 (1989).

    ADS  Google Scholar 

  • Gaisser, T.K., and F. Halzen: Phys. Rev. Lett., 54, p. 1754 (1985).

    ADS  Google Scholar 

  • Gaisser, T.K., and T. Stanev: Phys. Lett. B, 219, p. 375 (1989).

    ADS  Google Scholar 

  • Gaisser, T.K., et al.: PICRC, 8, p. 55 (1990).

    ADS  Google Scholar 

  • Gaisser, T.K.: Cosmic Rays and Particle Physics, Cambridge University Press, Cambridge 2nd ed. (1992).

    Google Scholar 

  • Gaisser, T.K., et al.: Phys. Rev. D, 47, p. 1919 (1993).

    ADS  Google Scholar 

  • GEANT: Application Software Group, GEANT, CERN, Geneva, Switzerland, Program Library (1995). http://wwwasdoc.web.cern.ch/wwwasdoc/geant/geantall.html

  • Geer, L.Y., et al.: Phys. Rev. C, 52, p. 334 (1995).

    ADS  Google Scholar 

  • Geist, W.M., et al.: Phys. Rep., 197, pp. 263–374 (1990).

    ADS  Google Scholar 

  • Giaccomelli, G., et al.: Nucl. Instr, Meth. A, 411, p. 41 (1998).

    Google Scholar 

  • Giaccomelli, G.: arXiv:0802.2241v1 [hep-ph] (15 February 2008).

    Google Scholar 

  • Gierula, J., et al.: Acta Phys. Polon., 19, p. 119 (1960a).

    Google Scholar 

  • Gierula, J., et al.: Nuovo Cim., 18, p. 102 (1960b).

    Google Scholar 

  • Gierula, J., et al.: Phys. Rev., 122, p. 626 (1961).

    ADS  Google Scholar 

  • Glauber, R.J.: Lectures in Theoretical Physics, W.E. Brittin and L.G. Dunham, eds., Interscience, New York, 1959, Vol. 1, p. 135 (1959).

    Google Scholar 

  • Glauber, R.J., and G. Matthiae: Nucl. Phys. B, 12, p. 135 (1970).

    ADS  Google Scholar 

  • Goryunov, N.N., et al.: PICRC (Moscow, 1959), 2, p. 70 (1960).

    Google Scholar 

  • Gottfried, K.: Coherent Nuclear Production of Multibody States, Theory Report, TH.1545-CERN, CERN, Geneva (Switzerland) (1972).

    Google Scholar 

  • Gottfried, K.: An Introduction to Multiple Production Processes, CERN Lecture Given in the Academic Training Program, November and December, 1972. Theory Report, TH.1615-CERN, CERN, Geneva, Switzerland (1973a).

    Google Scholar 

  • Gottfried, K.: CERN (Geneva) Theory Preprint, TH.1735-CERN (1973b).

    Google Scholar 

  • Gottfried, K.: Phys. Rev. Lett., 32, p. 957 (1974).

    ADS  Google Scholar 

  • Gribov, V.N.: Soviet Phys. JETP, 26, p. 414 (1968).

    ADS  Google Scholar 

  • Gribov, V.N.: Soviet Phys. JETP, 29, p. 483 (1969).

    ADS  Google Scholar 

  • Gribov, V.N.: Soviet Phys. JETP, 30, p. 709 (1970).

    ADS  Google Scholar 

  • Grieder, P.K.F.: Acta Phys. Acad. Sci. Hung., 29, S3, p. 563 (1970a).

    Google Scholar 

  • Grieder, P.K.F.: Acta Phys. Acad. Sci. Hung., 29, S3, p. 569 (1970b).

    Google Scholar 

  • Grieder, P.K.F.: Institute for Nuclear Study, University of Tokyo, Tokyo, Japan. Report Nr. I.N.S., J, 125 (1970c).

    Google Scholar 

  • Grieder, P.K.F.: Nuovo Cim., A, 7, p. 867 (1972).

    ADS  Google Scholar 

  • Grieder, P.K.F.: PICRC, 3, p. 2204 (1973).

    ADS  Google Scholar 

  • Grieder, P.K.F.: Rivista del Nuovo Cim., 7, p. 1 (1977).

    ADS  Google Scholar 

  • Grieder, P.K.F.: PICRC, 9, p. 161 (1979a).

    Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 167 (1979b).

    Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 173 (1979c).

    Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 178 (1979d).

    ADS  Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 184 (1979e).

    Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 190 (1979f).

    Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 196 (1979g).

    Google Scholar 

  • Grieder, P.K.F.: PICRC 9, p. 202 (1979h).

    Google Scholar 

  • Grieder, P.K.F.: Proc. Japan – US Seminar on Cosmic Ray Muon and Neutrino Physics/Astrophysics Using Deep Underground/Underwater Detectors, Institute for Cosmic Ray Research, University of Tokyo, p. 183 (1986).

    Google Scholar 

  • Grieder, P.K.F., et al., Eds.: Very High Energy Cosmic Ray Interactions. Proceedings of the XIII. Internat. Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI), Pylos, Greece, 6–12 September 2004, Nucl. Phys. B (Proc. Suppl.), 151, pp. 3–508 (2006).

    Google Scholar 

  • Grigorov, N.L., et al.: Zh. Eksper. Teor. Fiz., 33, p. 1099 (1957).

    Google Scholar 

  • Grigorov, N.L., et al.: PICRC, 2, p. 860 (1965).

    ADS  Google Scholar 

  • Grigorov, N.L., et al.: Can. J. Phys., 46, p. S686 (1968).

    ADS  Google Scholar 

  • Guzhavin, V.V., and G.T. Zatsepin: Zurn. Eksp. Teor. Fiz., 32, p. 365 (1957).

    Google Scholar 

  • Hagedorn, R.: Nuovo Cim., Suppl., 3, p. 147 (1965).

    Google Scholar 

  • Hagedorn, R., and J. Ranft: Nuovo Cim., Suppl., N. 2, Ser. I, 6, p. 169 (1968).

    Google Scholar 

  • Hagedorn, R., et al.: Hadronic Matter at Extreme Energy Density, N. Cabbibo and L. Sertorio, eds., Plenum Publishing Corp., New York (1980).

    Google Scholar 

  • Hama, Y., and S. Paiva: Phys. Rev. Lett., 78, p. 3070 (1997).

    ADS  Google Scholar 

  • Hara, T., et al.: Phys. Rev. Lett., 50, p. 2058 (1983).

    ADS  Google Scholar 

  • He, Y.D.: J. Phys. G, 19, p. 1953 (1993).

    ADS  Google Scholar 

  • He, Y.D., and P.B. Price: Z. Phys. A, 348, p. 105 (1994).

    ADS  Google Scholar 

  • Heck, D., KASCADE Collaboration: PICRC, 6, p. 245 (1997).

    Google Scholar 

  • Heck, D.: PICRC, 1, p. 233 (2001).

    ADS  Google Scholar 

  • Heck, D., et al.: PICRC, Invited, Rapporteur and Highlight papers, p. 240 (2001).

    Google Scholar 

  • Heck, D., and J. Knapp: Extensive Air Shower Simulation with Corsika. A User’s Guide Forschungszentrum Karlsruhe, Germany. Version 6.018 (October 1 2002).

    Google Scholar 

  • Heck, D., et al.: Nucl. Phys. B (Proc. Suppl.), 151, p. 127 (2003).

    ADS  Google Scholar 

  • Heck, D., and J. Knapp: Extensive Air Shower Simulation with Corsika: A User’s Guide, Forschungszentrum Karlsruhe, Germany; Version 6.500, (March 6 2006). Updated version, see CORSIKA.

    Google Scholar 

  • Heinemann, R.E., and W.E. Hazen: Phys. Rev., 90, p. 496 (1953).

    ADS  Google Scholar 

  • Heisenberg, W.: Zeitschr. Phys., 126, p. 569 (1949a).

    ADS  MATH  Google Scholar 

  • Heisenberg, W.: Nature, Lond., 164, p. 65 (1949b).

    ADS  Google Scholar 

  • Hernàndez, J.J., et al.: Phys. Lett. B, 239, p. 1 (1990).

    Google Scholar 

  • Hillas, A.M.: PICRC, 1, p. 193 (1981a).

    ADS  Google Scholar 

  • Hillas, A.M.: Proceedings of the Paris Workshop on Cascade Simulations, J. Linsley and A.M. Hillas, eds., p. 39 (1981b).

    Google Scholar 

  • Hillas, A.M.: Nucl. Phys. B (Proc. Suppl.), 52B, p. 29 (1997).

    ADS  Google Scholar 

  • Hirzebruch, S.E., et al.: Phys. Rec. C, 51, p. 2085 (1995).

    ADS  Google Scholar 

  • Honda, M., et al.: Phys. Rev. Lett., 70, p. 525 (1993).

    ADS  Google Scholar 

  • Hörandel, J.R.: J. Phys. G, 29, p. 2439 (2003).

    ADS  Google Scholar 

  • Horn, D.: Phys. Rep., 4, p. 1 (1972).

    MathSciNet  ADS  Google Scholar 

  • Huang, H.Z.: Nucl. Phys. A, 698, p. 663c (2002).

    ADS  Google Scholar 

  • Jacob, M., and R. Slansky: Phys. Lett. B, 37, p. 408 (1971).

    ADS  Google Scholar 

  • Jacob, M., and P.V. Landshoff: Phys. Rep., 48, p. 285 (1978).

    ADS  Google Scholar 

  • Jones, L.W., et al.: Acta Phys. Acad. Sci. Hung., 29, S3, p. 205 (1970).

    Google Scholar 

  • Jones, L.W., et al.: Nucl. Phys. B, 43, p. 477 (1972).

    ADS  Google Scholar 

  • Jones, L.W.: Proceedings, Workshop on Cosmic Ray Interactions and High Energy Results, C.M.G. Lattes, ed., La Paz, Bolivia (July 19, 1982) and Rio de Janeiro, Brazil, (July 26, 1982), p. 3. (1982).

    Google Scholar 

  • Jones, L. W.: PICRC, 5, p. 17 (1983).

    Google Scholar 

  • Kadija, K., and M. Martins: Phys. Rev. D, 48, p. 2027 (1993).

    ADS  Google Scholar 

  • Kaidalov, A.B.: Phys. Lett. B, 116, p. 459 (1982).

    ADS  Google Scholar 

  • Kaidalov, A.B., and K.A. Ter-Martirosyan: Phys. Lett. B, 117, p. 247 (1982).

    ADS  Google Scholar 

  • Kalmykov, N.N., et al.: Nucl. Phys. B (Proc. Suppl.), 52 B, p. 17 (1997).

    ADS  Google Scholar 

  • Kamata, K., and J. Nishimura: Progr. Theor. Phys. Jpn., 6, Suppl., p. 93 (1958).

    ADS  Google Scholar 

  • Kampert, K.H., et al.: PICRC, Invited, Rapporteur and Highlight papers, p. 240 (2001).

    Google Scholar 

  • Kasahara, K., and Y. Takahashi: Progr. Theor. Phys. 55, p. 1896 (1976).

    ADS  Google Scholar 

  • Kasahara, K., et al.: PICRC, 13, p. 70 (1979a).

    Google Scholar 

  • Kasahara, K., et al.: PICRC, 13, p. 76 (1979b).

    Google Scholar 

  • Kawasumi, N., et al.: Phys. Rev. 53, D, p. 3534 (1996).

    ADS  Google Scholar 

  • Kempa, J., and J. Wdowczyk: J. Phys. G, 9, p. 1271 (1983).

    ADS  Google Scholar 

  • Khristiansen, G.B.: Cosmic Rays of Superhigh Energies. Karl Thiemig Verlag, München (1980).

    Google Scholar 

  • Klages, H.O., et al.: Proceedings of the International Symposium on Very High Energy Cosmic Ray Interactions, Karlsruhe, 1996; Nucl. Phys. B (Proc. Suppl.), 52, p. 92 (1997). (See also Antoni et al., 2003).

    Google Scholar 

  • Klein, S.R.: Nucl. Phys. B (Proc. Suppl.), 122, p. 76 (2003).

    ADS  Google Scholar 

  • Knapp, J., et al.: A Comparison of Hadronic Interaction Models Used in Air Shower Simulations and their Influence on Shower Development and Observables, Forschungszentrum Karlsruhe, Report FZKA 5828 (1996).

    Google Scholar 

  • Knapp, J., et al.: Astropart. Phys., 19, p. 77 (2003).

    ADS  Google Scholar 

  • Knurenko, S.P., et al.: PICRC, 1, p. 372 (1999).

    ADS  Google Scholar 

  • Koba, Z., et al.: Nucl. Phys. B, 40, p. 317 (1972).

    ADS  Google Scholar 

  • Kopeliovich, B.Z., et al.: Phys. Rev. D, 39, p. 769 (1989).

    ADS  Google Scholar 

  • Landau, L.D., and I.Ya. Pomeranchuk: Dokl. Akad. Nauk. SSSR, 92, p. 535 (1953a).

    MATH  Google Scholar 

  • Landau, L.D., and I.Ya. Pomeranchuk: Dokl. Akad. Nauk. SSSR, 92, p. 735 (1953b).

    MATH  Google Scholar 

  • Lattes, C.M.G., et al.: PICRC, 4, p. 2671 (1973).

    ADS  Google Scholar 

  • Liland, A.: PICRC, 6, p. 178 (1987).

    ADS  Google Scholar 

  • Lindstrom, P.J., et al.: Paper Presented at the Symposium on Isotopic Composition, Durham, NH, 1973, also LBL-3650 preprint (1973).

    Google Scholar 

  • Linsley, J.: PICRC, 6, p. 1 (1985).

    Google Scholar 

  • Matthews, J.: PICRC, 1, p. 261 (2001).

    MathSciNet  ADS  Google Scholar 

  • Matthews, J.: Astropart. Phys., 22, p. 387 (2005).

    ADS  Google Scholar 

  • Mielke, H.H., et al.: PICRC, 4, p. 155 (1993).

    Google Scholar 

  • Mielke, H.H., et al.: J. Phys. G, 20, p. 637 (1994).

    MathSciNet  ADS  Google Scholar 

  • Mielke, H.H., et al.: Nucl. Instr. Meth. A, 360, p. 367 (1995).

    ADS  Google Scholar 

  • Miesowicz, M.: Progress in Elementary Particle and Cosmic Ray Physics, North-Holland, Amsterdam, Vol. X, pp. 101–168 (1971).

    Google Scholar 

  • Milke, J., KASCADE Collaboration: PICRC, 6, p. 97 (1997).

    Google Scholar 

  • Milke, J., et al.: Nucl. Phys. B (Proc. Suppl.) 151, p. 469 (2006).

    ADS  Google Scholar 

  • Mukhamedshin, R.A.: PICRC, 5, pp. 343, 347 (1981).

    Google Scholar 

  • Murthy, P.V.R., et al.: Nucl. Phys. B, 92, p. 269 (1975).

    ADS  Google Scholar 

  • NEEDS Workshop: Informal meeting on “Needs for Accelerator Experiments for the Understanding of High Energy Extensive Air Showers”, R. Engel, A. Haungs, L. Jones, and H. Rebel, initiators, April 18–20 (2002). Contributions available as PDF-Files at http://www-ik.fzk.de/~needs/

  • Nikolaev, N.N.: Phys. Rev. D, 48, p. R1904 (1993).

    ADS  Google Scholar 

  • Ohsawa, A., and K. Sawayanagi: Phys. Rev. D, 45, p. 3128 (1992).

    ADS  Google Scholar 

  • Ohsawa, A., et al.: Phys. Rev. D, 70, p. 074028 (2004).

    ADS  Google Scholar 

  • Ohsawa, A., et al.: Nucl. Phys. B (Proc. Suppl.), 151, pp. 227, 231 (2006).

    Google Scholar 

  • Ostapchenko, S.: Nucl. Phys. B (Proc. Suppl.), 151, p. 143 (2006a).

    ADS  Google Scholar 

  • Ostapchenko, S.: Nucl. Phys. B (Proc. Suppl.), 151, p. 147 (2006b).

    ADS  Google Scholar 

  • Ostapchenko, S.: astro-ph/0610788 (2006c).

    Google Scholar 

  • Ostapchenko, S.: Phys. Lett. B, 636, p. 40 (2006d).

    ADS  Google Scholar 

  • Ostapchenko, S.: Phys. Rev. D, 74, p. 014026 (2006e).

    ADS  Google Scholar 

  • Pal, Y.A., and B. Peters: Dansk. Vidensk. Selsk., Mat. Fys. Medd., 33, No. 15, p. 1–55 (1964).

    Google Scholar 

  • Pattison, B., et al., Eds.: Very High Energy Cosmic Ray Interactions. Proceedings of the XIIth International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI), CERN, Geneva, Switzerland, 15–20 July 2002, Section “NEEDS Workshop Discussion”, Nucl. Phys., B (Proc. Suppl.), 122, pp. 1–487 (2003).

    Google Scholar 

  • Perkins, D.H.: Progress in Elementary Particle and Cosmic Ray Physics, North-Holland, Amsterdam, Vol. V, pp. 257–363 (1960).

    Google Scholar 

  • Peters, B.: Nuovo Cim., 22, p. 800 (1961).

    Google Scholar 

  • Peters, B.: PICRC, Kyoto (1961) 3, p. 522. J. Phys. Soc. Jpn., 17, Suppl. A III (1962).

    Google Scholar 

  • Peyrou, Ch.: Proceedings of The Aix-en-Provence International Conference on Elementary Particles, 14–20 September 1961, Plenary Sessions, II, p. 103 (1961).

    Google Scholar 

  • Pierog, T., and K. Werner: PICRC, pre-conference edition, paper 0905, Merida, Mexico (2007).

    Google Scholar 

  • Powell, C.F., et al.: The Study of Elementary Particles by the Photographic Method, Pergamon Press, London (1959).

    Google Scholar 

  • Prague Workshop, September (2005). Proceedings of the International Conference From Colliders to Cosmic Rays, Prague (2005), Jan Ridky, ed.:, Czech. J. Phys., 56, Suppl. A, pp. 13–367 (2006).

    Google Scholar 

  • Ranft, J.: Phys. Rev. D, 51, p. 64 (1995).

    ADS  Google Scholar 

  • Ranft, J.: Siegen Report, SI-99-5 (hep-ph/9911213) (1999a).

    Google Scholar 

  • Ranft, J.: Siegen Report, SI-99-6 (hep-ph/9911232) (1999b).

    Google Scholar 

  • Rao, M.S.V., and B.V. Sreekantan: Extensive Air Showers, World Scientific, Singapore (1998).

    Google Scholar 

  • Ren, J.R., et al.: Phys. Rev. D, 38, p. 1404 (1988).

    ADS  Google Scholar 

  • Roberts, T.J., et al.: Nucl. Phys. B, 159, p. 56 (1979).

    ADS  Google Scholar 

  • Rossi, A.M., et al.: Nucl. Phys. B, 84, p. 269 (1975).

    ADS  Google Scholar 

  • Rossi, B., and K. Greisen: Rev. Mod. Phys., 13, p. 240 (1941).

    ADS  Google Scholar 

  • Rudstam, G.: Z. Naturforschung, 21a, p. 1027 (1966).

    ADS  Google Scholar 

  • Saito, T.: J. Phys. Soc. Jpn., 30, p. 1243 (1971).

    ADS  Google Scholar 

  • Saito, T.: Astropart. Phys., 1, p. 257 (1993).

    ADS  Google Scholar 

  • Sciutto, S.J.: PICRC, 1, p. 411 (1999a).

    ADS  Google Scholar 

  • Sciutto, S.J.: Preprint, astro-ph/9911331 (1999b).

    Google Scholar 

  • Sciutto, S.J.: PICRC, 1, p. 237 (2001).

    ADS  Google Scholar 

  • Shabelski, Yu.M.: Zeitschr. Phys. C, 38, p. 569 (1988).

    ADS  Google Scholar 

  • Shapiro, M.M., and R. Silberberg: Ann. Rev. Nucl. Sci., 20, p. 323 (1970).

    ADS  Google Scholar 

  • Shibata, M.: Phys. Rev. D, 24, p. 1847 (1981).

    ADS  Google Scholar 

  • Silberberg, R., et al.: Composition and Origin of Cosmic Rays, p. 321, NATO ASI Series. Series C. Mathematical and Physical Sciences No 107, M.M. Shapiro, ed., D. Reidel Publishing Co., Dordrecht (1982).

    Google Scholar 

  • Sivers, D., et al.: Phys. Rep., 23, p. 1 (1976).

    ADS  Google Scholar 

  • Slansky, R.: Phys. Rep., 11, p. 99 (1974).

    ADS  Google Scholar 

  • Slavatinski, S.A.: Nucl. Phys. B (Proc. Suppl.), 122, pp. 3–11 (2003).

    ADS  Google Scholar 

  • Tannenbaum, M.J., and J. Kang: Nucl. Phys. A, 566, p. 423c (1994).

    ADS  Google Scholar 

  • Thomé, W., et al.: Nucl. Phys. B, 129, p. 365 (1977).

    ADS  Google Scholar 

  • Tonwar, S.C.: J. Phys. G, 5, p. L193 (1979).

    ADS  Google Scholar 

  • Vatcha, R.H., et al.: J. Phys. A, 5, p. 859 (1972).

    ADS  Google Scholar 

  • Waddington, C.J., et al.: Nucl. Phys. A, 566, p. 427c (1994).

    ADS  Google Scholar 

  • Wdowczyk, J., and A.W. Wolfendale: J. Phys. G, 10, p. 257 (1984).

    ADS  Google Scholar 

  • Wdowczyk, J., and A.W. Wolfendale: J. Phys. G, 13, p. 411 (1987).

    ADS  Google Scholar 

  • Weiner, R.M., et al.: Phys. Rev. D, 45, p. 2308 (1992).

    ADS  Google Scholar 

  • Werner, K.: Phys. Rep., 232, p. 87 (1993).

    ADS  Google Scholar 

  • Werner, K., et al.: Phys. Rev. C, 74, p. 044902-11 (2006).

    ADS  Google Scholar 

  • Westfall, G.D., et al.: Phys. Rev. C, 19, p. 1309 (1979).

    ADS  Google Scholar 

  • Wlodarczyk, Z.: J. Phys. G, 19, p. L133 (1993).

    ADS  Google Scholar 

  • Wlodarczyk, Z.: J. Phys. G, 21, p. 281 (1995).

    ADS  Google Scholar 

  • Wu, T.T., and C.N. Yang: Phys. Rev., 137, p. B708 (1965).

    MathSciNet  ADS  Google Scholar 

  • Yakovlev,V.I.: Nucl. Phys. B (Proc. Suppl.), 122, pp. 417–421 (2003).

    ADS  Google Scholar 

  • Yakovlev,V.I.: PICRC, 9, p. 251 (2005).

    Google Scholar 

  • Yodh, G.B., et al.: Phys. Rev. Lett., 28, p. 1005 (1972).

    ADS  Google Scholar 

  • Yodh, G.B., et al.: Phys. Rev. D, 28, p. 3233 (1973).

    ADS  Google Scholar 

  • Yodh, G.B., et al.: Phys. Rev. D, 27, p. 1183 (1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K.F. Grieder .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grieder, P.K. (2010). Hadronic Interactions and Cascades. In: Extensive Air Showers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76941-5_3

Download citation

Publish with us

Policies and ethics