Skip to main content

Atmospheric Fluorescence

  • Chapter
Extensive Air Showers

Overview

This chapter deals exclusively with atmospheric fluorescence caused by air showers, its production, detection and interpretation. After discussing the basic mechanisms of gas fluorescence, in particular of air and nitrogen fluorescence, including associated quenching effects, we illuminate its role in air shower research. We outline the unique features of atmospheric fluorescence and discuss the detection principle, describe the atmospheric effects of dust and aerosols, scattering processes such as Rayleigh and Mie scattering, and the influence of seasonal pressure changes that cause varying absorption and attenuation of the fluorescence light. The evaluation of the data to determine the energy and composition of the primary radiation is summarized together with specific data. The resulting primary spectrum and conclusions on the primary mass and its energy dependence are presented in Chap. 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The typically used wavelength region is 300–400 nm and for this range the contribution of 1N is only about 10%.

  2. 2.

    HiRes had been shut-down in 2006.

  3. 3.

    For an extensive description of the Auger Project that is in partial operation since 2006, see reference Abraham et al. (2004), listed in Chap. 1.

  4. 4.

    Scattering on air molecules.

  5. 5.

    Scattering on aerosols.

  6. 6.

    Typically Mie scattering is less important because the experimental sites are a priori chosen accordingly, however in dusty areas it plays an important role.

  7. 7.

    It is assumed that the shower trajectory points away from the detector, such that no direct Cherenkov light can reach it.

  8. 8.

    Mainly the scattered part since the direct contribution had been strongly reduced by appropriate cuts.

  9. 9.

    Today it is recommended to reconstruct the energy loss (dE/dX) profile from the fluorescence measurements instead of the shower size \(N_{e}(X)\), and to integrate it over the entire trajectory to get the total calorimetric energy of the shower, since dE/dX is more directly related to the fluorescence (Keilhauer, 2006, private communication).

  10. 10.

    In CORSIKA a refined expression is now being used (Keilhauer, 2006, private communication).

  11. 11.

    Note that some authors use for \(E_{\mathrm{crit}} = 81\;\mathrm{MeV}\).

References

  • Abbasi, R.U., et al.: Astropart. Phys., 25, p. 74 (2006a).

    Article  ADS  Google Scholar 

  • Abbasi, R.U., et al.: Astropart. Phys., 25, p. 93 (2006b).

    Article  ADS  Google Scholar 

  • Abraham, J., et al.: Nucl. Instr. Meth., A 523, p. 50 (2004).

    ADS  Google Scholar 

  • Abu-Zayyad, T., et al.: PICRC, 3, p. 264 (1999).

    Google Scholar 

  • Abu-Zayyad, T., et al.: Nucl. Instr. Meth. A, 450, p. 253 (2000).

    Article  ADS  Google Scholar 

  • Abu-Zayyad, T., et al.: Astropart. Phys., 16, p. 1 (2001).

    Article  ADS  Google Scholar 

  • Allen, C.W.: Astrophysical Quantities, Athlone Press, University of London, London (GB), (1976).

    Google Scholar 

  • Andrews, D., et al.: Middle Atmosphere Dynamics, Academic Press, San Diego (1987).

    Google Scholar 

  • Arciprete, F., et al.: PICRC, 7, p. 55 (2005).

    Google Scholar 

  • Arqueros, F., et al.: Astropart. Phys., 26, pp. 231–242 (2006).

    Article  ADS  Google Scholar 

  • Arqueros, F., et al.: Proceedings of the 5th Fluorescence Workshop, El Escorial, Madrid, Spain, September 16–20 (2007). Nucl. Instr. Meth. A, 597, pp. 1–120 (2008).

    Google Scholar 

  • Babcock, H.W., and J.J. Johnson: Astrophys. J., 94, p. 271 (1941).

    Article  ADS  Google Scholar 

  • Baltrusaitis, R.M., et al.: Nucl. Instr. Meth. A, 240, p. 410 (1985).

    Article  ADS  Google Scholar 

  • Baum, N.A.: Stars and Stellar Systems, Astronomical Techniques, The Detection and Measurement of Faint Astronomical Sources, University of Chicago Press, Chicago, London, Vol. 2, p. 1 (1962).

    Google Scholar 

  • Bellido, J.A., et al.: PICRC, 8, p. 113 (2005).

    ADS  Google Scholar 

  • Bérat, C., et al., (EUSO Collaboration): PICRC, 2, p. 883 (2003).

    Google Scholar 

  • Bergeson, H.E., et al.: PICRC, 8, p. 3059 (1975a).

    ADS  Google Scholar 

  • Bergeson, H.E., et al.: PICRC, 8, p. 3064 (1975b).

    ADS  Google Scholar 

  • Bergeson, H.E., et al.: Phys. Rev. Lett., 39, p. 847 (1977).

    Article  ADS  Google Scholar 

  • Borione, A., et al.: Nucl. Instr. Meth. A, 346, p. 329 (1994).

    Article  ADS  Google Scholar 

  • Bunner, A.N.: Cornell-Sydney University Astronomy Center Report 62 (1966).

    Google Scholar 

  • Bunner, A.N.: Sky Telescope, p. 204, October (1967).

    Google Scholar 

  • Bunner, A.N., et al.: Can. J. Phys., 46, p. 266 (1968).

    Article  ADS  Google Scholar 

  • Cassiday, G.L., et al.: PICRC, 8, p. 258 (1977a).

    ADS  Google Scholar 

  • Cassiday, G.L., et al.: PICRC, 8, p. 270 (1977b).

    ADS  Google Scholar 

  • Cassiday, G.L., et al.: Cosmic Rays and Particle Physics – 1978 (Bartol Conference). American Institute of Physics, AIP Conference Proceedings No. 49, T.K. Gaisser, ed., Particles and Fields Subseries No. 16, p. 417 (1979).

    Google Scholar 

  • Cassiday, G., L.: Annu. Rev. Nucl. Part. Sci., 35, p. 321 (1985).

    Article  ADS  Google Scholar 

  • Catalano, O.: PICRC, 2, p. 411 (1999).

    Google Scholar 

  • Cester, R., et al., Auger Collaboration: PICRC, 8, p. 347 (2005).

    Google Scholar 

  • Chamberlain, J.W.: Physics of the Aurora and Air Glow, Academic Press, New York (1961).

    Google Scholar 

  • Chudakov, A.E.: Proceedings of the 5th Inter-American Seminar on Cosmic Rays, Bolivia, 2, XLIX-1 (1962).

    Google Scholar 

  • Chuveyev, K.: Dokl. Akad. Nauk SSSR, 87, 4, p. 551 (1952).

    Google Scholar 

  • Corbato, S.C., et al.: Nucl. Phys. B (Proc. Suppl.), 28B, p. 36 (1992).

    Article  ADS  Google Scholar 

  • Davidson, G., and R. O’Neil: J. Chem. Phys., 41, p. 3946 (1964).

    Article  ADS  Google Scholar 

  • Dovzenko, O.J., and A.A. Pomanski: Sov. Phys. JETP, 18, p. 187 (1964).

    Google Scholar 

  • Elbert, J.W., et al.: PICRC, 8, p. 264 (1977).

    ADS  Google Scholar 

  • Elbert, J.W., et al.: PICRC, 6, p. 227 (1983).

    Google Scholar 

  • Elterman, L., and R.B. Toolin: Handbook of Geophysics and Space Environments, Chap. 7, Air Force Cambridge Research Laboratory, Office of Aerospace Research, USAF (1965).

    Google Scholar 

  • Flowers, E.C., et al.: J. Appl. Metereol., 8, p. 955 (1969).

    Article  ADS  Google Scholar 

  • Gaisser, T.K., and A.M. Hillas: PICRC, 8, p. 353 (1977).

    ADS  Google Scholar 

  • Gaisser, T.K.: Cosmic Ray and Particle Physics, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  • Gans, R.: Ann. Physik, 76, p. 29 (1925).

    Article  ADS  Google Scholar 

  • Goody, R.: Principles of Atmospheric Physics and Chemistry, Oxford University Press, Oxford, ISBN 0-19-509362-3 (1995).

    Google Scholar 

  • Greisen, K.: PICRC, 2, p. 609 (1965).

    ADS  Google Scholar 

  • Greisen, K.: Phys. Rev. Lett., 16, p. 748 (1966).

    Article  ADS  Google Scholar 

  • Guérard, C.K.: Nucl. Phys. B (Proc. Suppl.), 75A, p. 380 (1999).

    Article  ADS  Google Scholar 

  • Hara, T., et al.: Acta Phys. Acad. Sci. Hung., 29, S3, p. 369 (1970).

    Google Scholar 

  • Hillas, A.M.: J. Phys. G, 8, p. 1461 (1982).

    Article  ADS  Google Scholar 

  • Hughes, R.H., et al.: Phys. Rev., 123, p. 2084 (1961).

    Article  ADS  Google Scholar 

  • Hüntemeyer, P., FLASH Collaboration: PICRC, 8, pp. 319–322 (2005)

    Google Scholar 

  • Jelley, J.V.: Cherenkov Radiation and Its Applications Pergamon, London (1958).

    Google Scholar 

  • Kakimoto, F., et al.: University of Tokyo, ICRC Report 346-95-12, November (1995a).

    Google Scholar 

  • Kakimoto, F., et al.: PICRC, 1, p. 1047 (1995b).

    ADS  Google Scholar 

  • Kakimoto, F., et al.: Nucl. Instr. Meth. A, 372, p. 527 (1996).

    Article  ADS  Google Scholar 

  • Kawai, H., et al., Telescope Array (TA) Collaboration: PICRC, 8, p. 141 (2005).

    Google Scholar 

  • Keilhauer, B.: Dissertation Universität Karlsruhe (2003) and Wissenschadtliche Berichte, FZKA 6958, Forschungszentrum Karlsruhe, Germany (2004).

    Google Scholar 

  • Keilhauer, B., et al.: Astropart. Phys., 22, p. 249 (2004).

    Article  ADS  Google Scholar 

  • Keilhauer, B., et al.: PICRC, 7, p. 119 (2005).

    Google Scholar 

  • Keilhauer, B., et al.: Astropart. Phys., 25, p. 259 (2006).

    Article  ADS  Google Scholar 

  • Kuzmin, V.A., and G.T. Zatsepin: Can. J. Phys., 46, p. S617 (1968).

    Article  ADS  Google Scholar 

  • Mason, G.W., et al.: PICRC, 8, p. 252 (1977).

    ADS  Google Scholar 

  • Mie, G.: Ann. Physik, 25, p. 377 (1908).

    Article  ADS  Google Scholar 

  • Molina, L.T., and M.J. Molina: J. Geophys. Res., 91, D13, p. 14501 (1986).

    Article  ADS  Google Scholar 

  • Morozov, A., et al.: Eur. Phys. J. D, 33, p. 207 (2005).

    Article  ADS  Google Scholar 

  • Mostafá, M.A., Pierre Auger Collaboration: PICRC, 1, p. 465 (2003).

    ADS  Google Scholar 

  • Mostafá, M.A., Pierre Auger Collaboration: PICRC, 7, p. 369 (2005).

    Google Scholar 

  • Mussa, R., et al.: Nucl. Instr. Meth. A, 518, p. 183 (2004).

    Article  ADS  Google Scholar 

  • Nagano, M., et al.: Astropart. Phys., 20, p. 293 (2003).

    Article  ADS  Google Scholar 

  • Nagano, M., et al.: Astropart. Phys., 22, p. 235 (2004).

    Article  ADS  Google Scholar 

  • NASA: National Aeronautics and Space Administration, US Standard Atmosphere 1976, NASA-TM-X-74335 (1976).

    Google Scholar 

  • Nerling, F., et al., Auger Collaboration: PICRC, 7, p. 131 (2005).

    Google Scholar 

  • Nicholls, R.W., et al.: Proc. Phys. Soc., 74, p. 87 (1959).

    Article  ADS  Google Scholar 

  • Pekala, J., et al.: PICRC, 7, p. 207 (2005).

    Google Scholar 

  • Pierog, T., et al.: PICRC, 7., p. 103 (2005).

    Google Scholar 

  • Porter, L.G., et al.: Nucl. Instr. Meth., 87, p. 87 (1970).

    Article  Google Scholar 

  • Protheroe, R.J.: J. Phys. G, 8, p. L165 (1982).

    Article  ADS  Google Scholar 

  • Rayleigh, L.: Phil. Mag., 12, p. 81 (1881) (Sci. Papers 74).

    Google Scholar 

  • Rayleigh, L.: Proc. Roy. Soc., A90, p. 219 (1914) (Sci. Papers 381).

    ADS  Google Scholar 

  • Rayleigh, L.: Proc. Roy. Soc., A94, p. 296 (1918) (Sci. Papers 427).

    ADS  Google Scholar 

  • Reil, K., and P. Hüntemeyer, FLASH Collaboration: PICRC, 8, pp. 323–326 (2005).

    Google Scholar 

  • Risse, M., and D. Heck: Astropart. Phys., 20, p. 661 (2004).

    Article  ADS  Google Scholar 

  • Roach, F.E.: Adv. Electron. Electron Phys., 18, p. 1 (1963).

    Google Scholar 

  • Sadowski, P.A., et al., High Resolution Fly’s Eye Collaboration: Astropart. Phys., 18, pp. 237–248 (2002).

    Article  ADS  Google Scholar 

  • Salby, M., L.: Fundamentals of Atmospheric Physics, Academic Press, Inc., San Diego, ISBN 0-12-615160-1 (1996).

    Google Scholar 

  • Scarsi, L.: PICRC, 2, p. 384 (1999).

    Google Scholar 

  • Scarsi, L.: Nuovo Cimento, 24 C, p. 471 (2001).

    ADS  Google Scholar 

  • Sommers, P.: Astropart. Phys., 3, p. 349 (1995).

    Article  ADS  Google Scholar 

  • Song, C., et al.: Astropart. Phys., 14, p. 7 (2000).

    Article  ADS  Google Scholar 

  • Suga, K.: 5th Inter-American Seminar on Cosmic Rays, Bolivia, 2, XLIX-1 (1962).

    Google Scholar 

  • Suga, K., et al.: J. Phys. Soc. Jpn., 17, Suppl. A III, p. 128 (1962).

    Google Scholar 

  • Tanahashi, G., et al.: PICRC, 12, p. 4385 (1975).

    ADS  Google Scholar 

  • Teshima, M., et al.: Nucl. Phys. B (Proc. Suppl.), 28B, p. 169 (1992).

    Article  ADS  Google Scholar 

  • Ueno, S.: Master Thesis (in Japanese), Tokyo Institute of Technology, Tokyo (1996).

    Google Scholar 

  • Waldenmaier, T., et al.: PICRC, 8, p. 53 (2005).

    ADS  Google Scholar 

  • Winston, R.: J. Opt. Soc. Am., 60, p. 245 (1970).

    Article  ADS  Google Scholar 

  • Zatsepin, G.T.: Dokl. Akad. Nauk SSSR, 80, p. 577 (1951).

    Google Scholar 

  • Zatsepin, G.T., and V.A. Kuzmin: JETP Lett., 4, p. 78 (1966).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K.F. Grieder .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grieder, P.K. (2010). Atmospheric Fluorescence. In: Extensive Air Showers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76941-5_17

Download citation

Publish with us

Policies and ethics