Skip to main content

On the Strength and Disruption Mechanisms of Small Bodies in the Solar System

  • Chapter
  • First Online:
Small Bodies in Planetary Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 758))

Abstract

During their evolutions, the small bodies of our Solar System are affected by several mechanisms which can modify their properties. While dynamical mechanisms are at the origin of their orbital variations, there are other mechanisms which can change their shape, spin, and even their size when their strength threshold is reached, resulting in their disruption. Such mechanisms have been identified and studied, by both analytical and numerical tools. The main mechanisms that can result in the disruption of a small body are collisional events, tidal perturbations, and spin-ups. However, the efficiency of these mechanisms depends on the strength of the material constituing the small body, which also plays a role in its possible equilibrium shape. As it is often believed that most small bodies larger than a few hundreds meters in radius are gravitational aggregates or rubble piles, i.e., cohesionless bodies, a fluid model is often used to determine their bulk densities, based on their shape and assuming hydrostatic equilibrium. A representation by a fluid has also been often used to estimate their tidal disruption (Roche) distance to a planet. However, cohesionless bodies do not behave like fluids. In particular, they are subjected to different failure criteria depending on the supposed strength model. This chapter presents several important aspects of material strengths that are believed to be adapted to Solar System small bodies and reviews the most recent studies of the different mechanisms that can be at the origin of the disruption of these bodies. Our understanding of the complex process of rock failure is still poor and remains an open area of research. While our knowledge has improved on the disruption mechanisms of small bodies of our Solar System, there is still a large debate on the appropriate strength models for these bodies. Moreover, material properties of terrestrial rocks or meteorites are generally used to model small bodies in space, and only space missions to some of these bodies devoted to precise in situ analysis and sample return will allow us to determine whether those models are appropriate or need to be revised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Benz:Smooth Particle Hydrodynamics – A Review. In: Proceedings of the NATO Advanced Research Workshop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, J. Robert Buchler (Ed.) (Kluwer Academic Publishers, Dordrecht, 1990)

    Google Scholar 

  2. W. Benz and E. Asphaug:Impact simulations with fracture. I- Method and tests, Icarus107, 98 ((1994)

    Article  ADS  Google Scholar 

  3. W. Benz and E. Asphaug:Catastrophic disruptions revisited, Icarus142, 5 ((1999)

    Article  ADS  Google Scholar 

  4. W. Benz and M. Jutzi:Collision and impact simulations including porosity. In: Nearth-Earth Objects, our celestial neighbors: Opportunity and Risks, A. Milani, G. B. Valsecchi and D. Vokrouhlicky (Eds.), IAU Symposium 236 (IAU, 2007) in press

    Google Scholar 

  5. W. F. Bottke, A. Morbidelli, R. Jedicke, J. M. Petit, H. Levison, P. Michel and T. S. Metcalfe:Debiased orbital and absolute magnitude distribution of the Near-Earth Object population, Icarus156, 399 ((2002)

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar:Ellipsoidal Figures of Equilibrium (Dover, New York, 1969)

    MATH  Google Scholar 

  7. W. F. Chen and D. J. Han:Plasticity for Structural Engineers (Springer, Berlin and New-York, 1988)

    Book  MATH  Google Scholar 

  8. D. D. Durda, W. F. Bottke, B. L. Enke, W. J. Merline, E. Asphaug, D. C. Richardson, Z. M. Leihnardt:The formation of asteroid satellites in large impacts: results from numerical simulations, Icarus170, 243 ((2004)

    Article  ADS  Google Scholar 

  9. B. J. Gladman, F. Migliorini, A. Morbidelli, V. Zappalá, P. Michel, A. Cellino, Ch. Froeschlé, H. F. Levison, M. Bailey and M. Duncan:Dynamical lifetimes of objetcs injected into asteroid belt resonances, Science277, 197 ((1997)

    Article  ADS  Google Scholar 

  10. D. E. Grady and M. E. Kipp:Continuum modeling of explosive fracture in oil shale, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.17, 147 ((1980)

    Article  Google Scholar 

  11. A. W. Harris:The rotation rates of very small asteroids: Evidence for “rubble pile” structure, Lunar Planet. Sci.27, 493 ((1996)

    ADS  Google Scholar 

  12. K. A. Holsapple:Equilbrium configurations of solid ellipsoidal cohesionless bodies, Icarus154, 432 (2001)

    Article  ADS  Google Scholar 

  13. K. A. Holsapple, I. Giblin, K. R. Housen, A. Nakamura and E. Ryan:Asteroid impacts: Laboratory experiments and scaling laws. In: Asteroids III, W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel (Eds.) (University of Arizona Press, Tuscon, 2002) pp. 443–462.

    Google Scholar 

  14. K. A. Holsapple:Equilibrium figures of spinning bodies with self-gravity, Icarus172, 272 ((2004)

    Article  ADS  Google Scholar 

  15. K. A. Holsapple and P. Michel:Tidal disruptions: a continuum theory for solid bodies, Icarus183, 331 ((2006)

    Article  ADS  Google Scholar 

  16. K. A. Holsapple:Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61, Icarus187, 500 ((2007)

    Article  ADS  Google Scholar 

  17. K. A. Holsapple:Spinning rods, ellipticaldisks and solid ellipsoidal bodies: Elastic and plastic stresses and limit spins, submitted (2007)

    Google Scholar 

  18. K. A. Holsapple and P. Michel:Tidal disruption II: a continuum theory for solid bodies with strength, with applications to the satellites of our Solar System, Icarus, submitted (2007)

    Google Scholar 

  19. K. R. Housen and K. A. Holsapple:Scale effects in strength-dominated collisions of rocky asteroids, Icarus142, 21 ((1999)

    Article  ADS  Google Scholar 

  20. J. H. Jeans:The motion of tidally-distorded masses, with special reference to the theories of cosmogony, Mem. Roy. Astron. Soc. London62, 1 ((1917)

    Google Scholar 

  21. Z. Knezěvić, A. Lemaítre and A. Milani:The determination of asteroid proper elements. In: Asteroids III, W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel (Eds.) (University of Arizona Press, Tucson, 2002) pp. 603–612.

    Google Scholar 

  22. S. C. Lowry, et al.:Direct detection of the asteroidal YORP effect, Science316, 272 ((2007)

    Article  ADS  Google Scholar 

  23. H. J. Melosh:Impact cratering: a geologic process (Oxford University Press, New York, 1989).

    Google Scholar 

  24. H. J. Melosh, E. V. Ryan and E. Asphaug: J. Geophys. Res.97, 14735 ((1992)

    Article  ADS  Google Scholar 

  25. P. Michel, W. Benz, P. Tanga and D. C. Richardson:Collisions and gravitational reaccumulations: forming asteroid families and satellites, Science294, 1696 ((2001)

    Article  ADS  Google Scholar 

  26. P. Michel, W. Benz, P. Tanga and D. C. Richardson:Formation of asteroid families by catastrophic disruption: simulations with fragmentation and gravitational reaccumulation, Icarus160, 10 ((2002)

    Article  ADS  Google Scholar 

  27. P. Michel, W. Benz and D. C. Richardson:Fragmented parent bodies as the origin of asteroid families, Nature421, 608 ((2003)

    Article  ADS  Google Scholar 

  28. P. Michel, W. Benz and D. C. Richardson:Disruption of pre-shattered parent bodies, Icarus168, 420 ((2004)

    Article  ADS  Google Scholar 

  29. P. Michel, W. Benz and D. C. Richardson:Catastrophic disruption and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulation, Planet. Space Sci.52, 1109 ((2004)

    Article  ADS  Google Scholar 

  30. Michel P.: Modelling collisions between asteroids: from laboratory experiments to numerical simulations. In: Souchay J. (ed.)Dynamics of Extended Celestial Bodies, Lect. Notes Phys. pp. 117–143 Springer, Berlin (2006)

    Google Scholar 

  31. P. Michel and K. A. Holsapple:Tidal disturbances of small cohesionless bodies: limit on planetary close approache distances. In: Nearth-Earth Objects, our celestial neighbors: Opportunity and Risks, A. Milani, G. B. Valsecchi and D. Vokrouhlicky (Eds.), IAU Symposium 236 (IAU, 2007) in press

    Google Scholar 

  32. A. Nakamura and A. Fujiwara:Velocity distribution of fragments formed in a simulated collisional disruption, Icarus92, 132 ((1991)

    Article  ADS  Google Scholar 

  33. A. M. Nakamura, P. Michel and M. Seto:Weibull parameters of Yakuno basalt targets used in documented high-velocity impact experiments, J. Geophys. Res.112, E02001, doi:10.1029/2006JE 002757 ((2007)

    Google Scholar 

  34. D. C. Richardson, W. F. Bottke and S. G. Love:Tidal distortion and disruption of Earth-crossing asteroids, Icarus134, 47 ((1998)

    Article  ADS  Google Scholar 

  35. D. C. Richardson, T. Quinn, J. Stadel and G. Lake:Direct large-scale N-body simulations of planetesimal dynamics, Icarus143, 45 ((2000)

    Article  ADS  Google Scholar 

  36. D. C. Richardson, Z. M. Leinhardt, W. F. Bottke, H. J. Melosh and E. Asphaug:Gravitational aggregates: Evidence and evolution. In: Asteroids III, W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel (Eds.) (University of Arizona Press, Tucson, 2002), pp. 501–515.

    Google Scholar 

  37. D. C. Richardson, P. Elankumaran and R. Sanderson:Numerical experiments with rubble piles: equilibrium shapes and spins, Icarus173, 349 ((2005)

    Article  ADS  Google Scholar 

  38. E. A. Roche: Acad. Sci. Lett. Montpelier. Mem. Section Sci.1, 243 ((1847)

    Google Scholar 

  39. I. Sharma, J. T. Jenkins and J. A. Burns:Tidal encounters of ellipsoidal granular asteroids with planets, Icarus183, 312 ((2006)

    Article  ADS  Google Scholar 

  40. D. J. Scheeres, S. J. Ostro, R. A. Werner, E. Asphaug and R. S. Hudson:Effect of gravitational interactions on asteroid spin states, Icarus147, 106 ((2000)

    Article  ADS  Google Scholar 

  41. D. J. Scheeres:Changes in rotational angular momentum due to gravitational interactions between two finite bodies, Celest. Mech. Dynam. Astron.81, 39 ((2001).

    Article  ADS  MATH  Google Scholar 

  42. J. H. Tillotson:Metallic equations of state for hypervelocity impact, General Atomic ReportGA-3216, July (1962).

    Google Scholar 

  43. D. Vokrouhlický and D. Capek:YORP-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubbincam’s approximation, Icarus159, 449 ((2002)

    Article  ADS  Google Scholar 

  44. K. J. Walsh and D. C. Richardson:Binary near-Earth asteroid formation: Rubble pile model of tidal disruptions, Icarus180, 201 ((2006)

    Article  ADS  Google Scholar 

  45. W. A. Weibull:Ingvetensk. Akad. Handl. 151, 5 ((1939)

    Google Scholar 

  46. K. Wuennemann, G. S. Collins and H. J. Melosh:A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets, Icarus180, 514 ((2006)

    Article  ADS  Google Scholar 

  47. V. Zappalá, A. Cellino, A. Dell’Oro and P. Paolicchi:Physical and dynamical properties of asteroid families. In: Asteroids III, W. F. Bottke, A. Cellino, P. Paolicchi and R. P. Binzel (Eds.) (University of Arizona Press, Tucson, 2002), pp. 619–631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michel, P. (2008). On the Strength and Disruption Mechanisms of Small Bodies in the Solar System. In: Mann, I., Nakamura, A., Mukai, T. (eds) Small Bodies in Planetary Systems. Lecture Notes in Physics, vol 758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76935-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76935-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76934-7

  • Online ISBN: 978-3-540-76935-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics