Skip to main content

Existing Drift Chambers – An Overview

  • Chapter
  • First Online:
Particle Detection with Drift Chambers

Part of the book series: Particle Acceleration and Detection ((PARTICLE,volume 0))

  • 1501 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Abrams, The MARK II detector for the SLC, Nucl. Instrum. Methods Phys. Res. A 287, 55 (1989)

    Article  ADS  Google Scholar 

  2. B. Adeva et al., The construction of the L3 experiment, Nucl. Instrum. Methods Phys. Res. A 289, 35 (1990)

    Article  ADS  Google Scholar 

  3. J. Adler et al., The MARK III vertex chamber, Nucl. Instrum. Methods Phys. Res. A 276, 42 (1989)

    Article  ADS  Google Scholar 

  4. S. Afanasiev et al. (NA49 Collaboration), The NA49 large acceptance hadron detector, Nucl. Instr. and Meth. Phys. Res. A 430, 210-244 (1999)

    Article  ADS  Google Scholar 

  5. S. Ahmad et al., The ASTERIX spectrometer at LEAR, Nucl. Instrum. Methods Phys. Res. A 286, 76 (1990)

    Article  ADS  Google Scholar 

  6. H. Albrecht et al., ARGUS – a universal detector at DORIS II, Nucl. Instrum. Methods Phys. Res. A 275, 1 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. P. Alexander et al., The Mark II vertex drift chamber, Nucl. Instrum. Methods Phys. Res. A 283, 519 (1989)

    Article  ADS  Google Scholar 

  8. W.W.M. Allison, C.B. Brooks, J.N. Bunch, J.H. Cobb, J.L. Lloyd, R.W. Fleming, The identification of secondary particles by ionisation sampling, Nucl. Instrum. Methods 119, 499 (1974)

    Article  ADS  Google Scholar 

  9. W.W.M. Allison, Relativistic particle identification by dE/dx: the fruits of experience with ISIS, in Int. Conf. for Colliding Beam Physics, SLAC, 61 (1982)

    Google Scholar 

  10. J. Allison, R.J. Barlow, C.K. Bowdery, I. Duerdoth, P.G. Rowe, An electrodeless drift chamber, Nucl. Instrum. Methods 201, 341 (1982)

    Article  Google Scholar 

  11. W.W.M. Allison, C.R. Brooks, P.D. Shield, M. Aguilar-Benitez, C. Willmott, J. Dumarchez, M. Schouten, Relativistic charged particle identification with ISIS2, Nucl. Instrum. Methods Phys. Res. 224, 396 (1984)

    Article  Google Scholar 

  12. H. Anderhub et al., A time expansion chamber as a vertex detector for the experiment MARK J at DESY, Nucl. Instrum. Methods Phys. Res. A 252, 357 (1986)

    Article  ADS  Google Scholar 

  13. H. Anderhub et al., A time expansion chamber as a vertex detector, Nucl. Instrum. Methods Phys. Res. A 263, 1 (1988)

    Article  ADS  Google Scholar 

  14. H. Anderhub et al., Operating experience with the MARK-J time expansion chamber, Nucl. Instrum. Methods Phys. Res. A 215, 50 (1988)

    Article  ADS  Google Scholar 

  15. W.W. Ash et al., Design, construction, prototype tests and performance of a vertex chamber for the MAC detector, Nucl. Instrum. Methods Phys. Res. A 261, 399 (1987)

    Article  ADS  Google Scholar 

  16. ATLAS muon Spectrometer: Technical Design Report, CERN, Geneva, Switzerland, CERN/LHC 97-22, 1997

    Google Scholar 

  17. W.B. Atwood et al., Performance of the ALEPH Time Projection Chamber, Nucl. Instrum. Methods Phys. Res. A 306, 446 (1991)

    Article  ADS  Google Scholar 

  18. R.E. Avery, Bose–Einstein Correlations of pions in e^+e^- annihilation at 29 GeV center-of-mass energy, PhD thesis, University of California, 1989, also LBL preprint 26593

    Google Scholar 

  19. G.J. Barber et al., Performance of the three-dimensional readout of the ALEPH inner tracking chamber, Nucl. Instrum. Methods Phys. Res. A 279, 212 (1989)

    Article  ADS  Google Scholar 

  20. V. I. Baskakov et al., The electroluminescenting drift chamber with spatial resolution 16 μm, Nucl. Instrum. Methods 158, 129 (1979)

    Article  ADS  Google Scholar 

  21. Ch. Becker, W. Weihs, G. Zech, Wireless drift tubes, electrodeless drift chambers and applications, Nucl. Instrum. Methods 200, 335 (1982)

    Article  Google Scholar 

  22. G.A. Beck et al., Radial wire drift chambers for the H1 forward track detector at HERA: Design, construction and performance, Nucl. Instrum. Methods Phys. Res. A 283, 471 (1989)

    Article  ADS  Google Scholar 

  23. F. Bedeschi et al., Design and construction of the CDF central tracking chamber, Nucl. Instrum. Methods Phys. Res. A 268, 50 (1988)

    Article  ADS  Google Scholar 

  24. E.R. Belau, W. Blum, Z. Hajduk, T.W.L. Sanford, Construction and performance of a small drift chamber with 23 μm spatial resolution, Nucl. Instrum. Methods 192, 217 (1982)

    Article  ADS  Google Scholar 

  25. J.P. Berge, Private communication, Sept. 1991

    Google Scholar 

  26. D. Bettoni et al., Drift chambers with controlled charge collection geometry for the NA34/HELIOS experiment, Nucl. Instrum Methods Phys. Res. A 252, 272 (1986)

    Article  ADS  Google Scholar 

  27. F. Bosi et al., Performance of the UA2 Jet Vertex Detector at the CERN Collider, Nucl. Instrum. Methods Phys. Res. A 283, 532 (1989)

    Article  ADS  Google Scholar 

  28. C. Brand et al., The DELPHI time projection chamber, Nucl. Instrum. Methods Phys. Res. A 283, 567 (1989)

    Article  ADS  Google Scholar 

  29. T. Bressani, G. Charpak, D. Rahm and Č. Zupančič;, Track localization by means of a drift chamber, in Proc. of the International Seminar on ‘Filmless Spark and Streamer Chambers’ (April 1969) (Joint Institut for Nuclear Research, Dubna, USSR, 1969) p. 275

    Google Scholar 

  30. A. Breskin, G. Charpak, F. Sauli, M. Atkinson, G. Schultz, Recent observations and measurements with high-accuracy drift chambers, Nucl. Instrum. Methods 124, 189 (1975)

    Article  ADS  Google Scholar 

  31. A. Breskin, G. Charpak, F. Sauli, A solution to the right–left ambiguity in drift chambers, Nucl. Instrum. Methods 151, 473 (1978)

    Article  ADS  Google Scholar 

  32. D. Bryman et al., The time projection chamber at TRIUMF, in Proceedings of a Workshop on ‘The Time Projection Chamber’, ed. by J.A. Macdonald held at TRIUMF, Vancouver, Canada, June 1983. AIP Conference Proceedings No. 108 (American Institute of Physics, New York 1984)

    Google Scholar 

  33. J.R. Carter et al., The OPAL vertex drift chamber, Nucl. Instrum. Methods Part. Phys. A 286, 99 (1990) and private communication from J. Carter

    Article  ADS  Google Scholar 

  34. G. Charpak, R. Bouclier, T. Bressani, J. Favier. Č. Zupančič, The use of multiwire proportional counters to select and localize charged particles, Nucl. Instrum. Methods 62, 262 (1968)

    Article  ADS  Google Scholar 

  35. G. Charpak, D. Rahm and H. Steiner, Some developments in the operation of multiwire proportional chambers, Nucl. Instrum. Methods 80, 13 (1970) (received 13 November 1969)

    Article  ADS  Google Scholar 

  36. G. Charpak, F. Sauli, W. Duinker, High accuracy drift chambers and their use in strong magnetic fields, Nucl. Instrum. Methods 108, 413 (1973)

    Article  ADS  Google Scholar 

  37. G. Charpak, S. Majewski and F. Sauli, The scintillating drift chamber: A new tool for high-accuracy, very-high-rate particle localization, Nucl. Instrum. Methods 126, 381 (1975)

    Article  ADS  Google Scholar 

  38. G. Charpak and F. Sauli, High-resolution electronic particle detectors, Annu. Rev. Nucl. Part. Sci. 34, 285 (1984)

    Article  Google Scholar 

  39. A.R. Clark et al. (Johns Hopkins University, Lawrence Berkeley Laboratory, University of California at Los Angeles, University of California at Riverside, Yale University), Proposal for a PEP facility based on the time projection chamber, SLAC-PUB-5012 (1976)

    Google Scholar 

  40. E. Daubie et al., Drift chambers with delay line readout, Nucl. Instrum. Methods Phys. Res. A 252, 435 (1986)

    Article  ADS  Google Scholar 

  41. W. Davies-White, G.E. Fischer, M.J. Lateur, R.H. Schindler, R.F. Schwitters, J.L. Siegrist, H. Taureg, H. Zaccone, D.L. Hartill, A large cylindrical drift chamber for the MARK II detector at SPEAR, Nucl. Instrum. Methods 160, 227 (1979)

    Article  ADS  Google Scholar 

  42. D. Decamp et al., ALEPH, A detector for electron–positron annihilation at LEP, Nucl. Instrum. Methods Phys. Res. A 294, 121 (1990)

    Article  ADS  Google Scholar 

  43. DELPHI Collaboration, The DELPHI detector at LEP. Nucl. Instrum. Methods Phys. Res. A 303, 233 (1991)

    Article  Google Scholar 

  44. R. Dörr, C. Grupen, A. Noll, Characteristics of a multiwire circular electrodeless drift chamber, Nucl. Instrum. Methods Phys. Res. A 238, 238 (1985)

    Article  ADS  Google Scholar 

  45. D. Durret et al., Calibration and performance of the MARK-II drift chamber vertex detector, SLAC-PUB 5259, LBL 29108 (1990)

    Google Scholar 

  46. A. Etkin et al., Modular TPC’s for relativistic heavy-ion experiments, Nucl. Instrum. Methods Phys. Res. A 283, 557 (1989)

    Article  ADS  Google Scholar 

  47. C. Fabjan, private communication, April 1990

    Google Scholar 

  48. H.M. Fischer et al., The OPAL jet chamber, Nucl. Instrum. Methods Phys. Res. A 283, 492 (1989)

    Article  ADS  Google Scholar 

  49. G. Flügge, B. Koppitz, R. Kotthaus, H. Lierl. Review of contributed papers for experimentation at LEP, Phys. Scr. 23, 499 (1981)

    Article  ADS  Google Scholar 

  50. A. Franz and C. Grupen, Characteristics of a circular electrodeless drift chamber, Nucl. Instrum. Methods 200, 331 (1982)

    Article  Google Scholar 

  51. U. Gastaldi, The spiral projection chamber (SPC): A central detector with high resolution and granularity suitable for experiments at LFP, Nucl. Instrum. Methods 188, 459 (1981)

    Article  ADS  Google Scholar 

  52. H. Grässer et al., Simultaneous track reconstruction and electron identification in the H1 radial drift chambers, Nucl. Instrum. Methods Phys. Res. A 283, 622 (1989)

    Article  ADS  Google Scholar 

  53. G. Harder, Optimierung der Ortsauflösung der zylindrischen Driftkammer des Detektors ARGUS, Diploma Thesis, DESY Internal Report F15-84/01 (unpublished)

    Google Scholar 

  54. K.G. Hayes, Drift chamber vertex detectors for SLC/LEP, Nucl. Instrum. Methods Phys. Res. A 265, 60 (1988)

    Article  ADS  Google Scholar 

  55. T. Kamae et al., The TOPAZ time projection chamber, Nucl. Instrum. Methods Phys. Res. A 252, 423 (1986)

    Article  ADS  Google Scholar 

  56. G. Lynch, Performance of the PEP-4 TPC, Talk given in MPI Munich, 22 June 1987

    Google Scholar 

  57. G. Marel et al., Large planar drift chambers, Nucl. Instrum. Methods 141, 43 (1977)

    Article  ADS  Google Scholar 

  58. J. Mulvey, Comments on particle identification using the relativistic rise of ionization energy loss, in Int. Conf. on Instrumentation for High Energy Physics, ed. by Stipcich and Stanislao, held in Frascati, Italy (Lab. Naz. del Com. Naz. per I’Energia Nucleare, Frascati 1973), p. 259

    Google Scholar 

  59. H.N. Nelson, Design and construction of a vertex chamber, and measurement of the average B hadron life time, SLAC 322 (1987) (unpublished)

    Google Scholar 

  60. A. Norton, private communication, July 1990

    Google Scholar 

  61. D.R. Nygren, Proposal to investigate the feasibility of a novel concept in particle detection, LBL internal report, Berkeley, February 1974

    Google Scholar 

  62. D.R. Nygren, TPC workshop summary, in Proceedings of a Workshop on ‘The Time Projection Chamber’, ed. by J.A. Macdonald held at TRIUMF, Vancouver, Canada, June 1983. AIP Conference Proceedings No. 108 (American Institute of Physics, New York 1984)

    Google Scholar 

  63. OPAL Collaboration, The OPAL detector at LEP, Nucl. Instrum. Methods Phys. Res. A 305, 275 (1991)

    Article  Google Scholar 

  64. Riegler et al., Resolution limits of drift tubes, Nucl. Instr. and Meth. in Phys. Res. A 443, 156-163 (2000), W. Riegler et al., Front-end electronics for drift tubes in high-rate environment, Nucl. Instr. and Meth. in Phys. Res. A 446, 555-559 (2000), M. Aleksa et al., Rate effects in high-resolution drift chambers, Nucl. Instr. and Meth. in Phys. Res. A 446, 435-443 (2000), M. Deile et al., Dependence of drift tube performance on the anode wire diameter, Nucl. Instr. and Meth. in Phys. Res. A 449, 528-535 (2000)

    Article  ADS  Google Scholar 

  65. A. Shirahashi et al., Performance of the TOPAZ time projection chamber, IEEE Trans. NS-35, 414 (1988)

    ADS  Google Scholar 

  66. P. Siegrist, CERN, private communication, September 1990

    Google Scholar 

  67. SLD Design Report, SLAC Report 273 (revised 1985)

    Google Scholar 

  68. F. Snider et al., The CDF Time Projection Chamber system, Nucl. Instrum. Methods Phys. Res. A 268, 75 (1988)

    Article  ADS  Google Scholar 

  69. W.H. Toki, Review of straw chambers, in Proceedings of the 5th Int. Conf. for Colliding Beam Physics, Novosibirsk (USSR), March 1990; also as: SLAC preprint SLAC-PUB-5232 (1990)

    Google Scholar 

  70. F. Villa (ed.), Vertex Detectors, Proceedings of a Workshop for the INFN Eloisatron Project, held September 1986 (Plenum, New York London 1988)

    Google Scholar 

  71. A. Wagner, Central detectors, Phys. Ser. 23, 446 (1981)

    Article  ADS  Google Scholar 

  72. A.H. Walenta, J. Heintze and B. Schürlein, The multiwire drift chamber, a new type of multiwire proportional chamber, Nucl. Instrum. Methods 92, 373 (1971) (received 27 November 1970)

    Article  ADS  Google Scholar 

  73. A.H. Walenta, Left–right assignment in drift chambers and MWPC’s using induced signals. Nucl. Instrum. Methods 151, 461 (1978)

    Article  ADS  Google Scholar 

  74. A.H. Walenta, The time expansion chamber and single ionization cluster measurement, IEEE Trans. Nucl. Sc. NS 26, 73 (1979)

    Article  ADS  Google Scholar 

  75. H.H. Williams, Design principles of detectors at colliding beams, Annu. Rev. Nucl. Part. Sc. 36, 361 (1986)

    Article  ADS  Google Scholar 

  76. C.C. Young et al., Performance of the SLD central driftchamber prototype, IEEE Transactions Nucl. Sc. 33, 176 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blum, W., Riegler, W., Rolandi, L. (2008). Existing Drift Chambers – An Overview. In: Particle Detection with Drift Chambers. Particle Acceleration and Detection, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76684-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76684-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76683-4

  • Online ISBN: 978-3-540-76684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics