Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1556 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPH:

Benign prostatic hypertrophy

CT:

Computed tomography

DVH:

Dose–volume histogram

EPIC:

Expanded prostate cancer index composite

EBRT:

External beam radiation therapy

GU:

Genitourinary

GyE:

Gray equivalent

HDR:

High dose rate

ICRU:

International commission on radiation units

IMRT:

Intensity-modulated radiation therapy

IGRT:

Image-guided radiation therapy

MRI:

Magnetic resonance imaging

MBP:

Maximum bladder point

NSAIDs:

Nonsteroidal anti-inflammatory drugs

NTCP:

Normal tissue complication probability

OAR:

Organs at risk

3DCRT:

Three-dimensional conformal radiotherapy

TURBT:

Transurethral resection of bladder tumor

TURP:

Transurethral prostate resection

References

  • Alert J, Jimenez J, Beldarrain L et al (1980) Complications from irradiation of carcinoma of the uterine cervix. Acta Radiol 19:13–15

    CAS  Google Scholar 

  • Al-Mamgani A, van Putten WL, Heemsbergen WD et al (2008) Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 92(4):980–988

    Google Scholar 

  • Amdur RJ, Parsons JT, Fitzgerald LT et al (1990) Adenocarcinoma of the prostate treated with external-beam radiation therapy: 5-year minimum follow-up. Radiother Oncol 18:235–246

    PubMed  CAS  Google Scholar 

  • Antonakopoulos GN, Hicks RM, Hamilton E et al (1982) Early and late morphological changes (including carcinoma of the urothelium) induced by irradiation of the rat urinary bladder. Br J Cancer 46:403–416

    PubMed  CAS  PubMed Central  Google Scholar 

  • Antonakopoulos GN, Hicks RM, Berry RJ (1984) The subcellular basis of damage to the human urinary bladder induced by irradiation. J Pathol 143:103–116

    PubMed  CAS  Google Scholar 

  • Axelsen SM, Bek KM, Petersen LK (2007) Urodynamic and ultrasound characteristics of incontinence after radical hysterectomy. Neurourol Urodyn 26:794–799

    PubMed  Google Scholar 

  • Barillot I, Horiot JC, Maingon P et al (1994) Maximum and mean bladder dose defined from ultrasonography. Comparison with the ICRU reference in gynaecological brachytherapy. Radiother Oncol 30:231–238

    PubMed  CAS  Google Scholar 

  • Bentzen SM, Lundbeck F, Christensen LL et al (1992) Fractionation sensitivity and latency of late radiation injury to the mouse urinary bladder. Radiother Oncol 25:301–307

    PubMed  CAS  Google Scholar 

  • Bochner BH, Figueroa AJ, Skinner EC et al (1998) Salvage radical cystoprostatectomy and orthotopic urinary diversion following radiation failure. J Urol 160:29–33

    PubMed  CAS  Google Scholar 

  • Cahlon O, Zelefsky MJ, Shippy A et al (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71:330–337

    Google Scholar 

  • Cheung MR, Tucker SL, Dong L et al (2007) Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 67:1059–1065

    PubMed  PubMed Central  Google Scholar 

  • Chism DB, Horwitz EM, Hanlon AL et al (2003) Late morbidity profiles in prostate cancer patients treated to 79–84 Gy by a simple four-field coplanar beam arrangement. Int J Radiat Oncol Biol Phys 55:71–77

    PubMed  Google Scholar 

  • Clark JA, Talcott JA (2001) Symptom indexes to assess outcomes of treatment for early prostate cancer. Med Care 39:1118–1130

    PubMed  CAS  Google Scholar 

  • Corcoran MO, Thomas DM, Lim A et al (1985) Invasive bladder cancer treated by radical external radiotherapy. Br J Urol 57:40–42

    PubMed  CAS  Google Scholar 

  • Cowan RA, McBain CA, Ryder WD et al (2004) Radiotherapy for muscle-invasive carcinoma of the bladder: results of a randomized trial comparing conventional whole bladder with dose-escalated partial bladder radiotherapy. Int J Radiat Oncol Biol Phys 59:197–207

    PubMed  Google Scholar 

  • Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346

    PubMed  CAS  Google Scholar 

  • Crook JM, Esche BA, Chaplain G et al (1987) Dose–volume analysis and the prevention of radiation sequelae in cervical cancer. Radiother Oncol 8:321–332

    PubMed  CAS  Google Scholar 

  • Dale E, Hellebust TP, Skjonsberg A et al (2000) Modeling normal tissue complication probability from repetitive computed tomography scans during fractionated high-dose-rate brachytherapy and external beam radiotherapy of the uterine cervix. Int J Radiat Oncol Biol Phys 47:963–971

    PubMed  CAS  Google Scholar 

  • Duncan W, Quilty PM (1986) The results of a series of 963 patients with transitional cell carcinoma of the urinary bladder primarily treated by radical megavoltage X-ray therapy. Radiother Oncol 7:299–310

    PubMed  CAS  Google Scholar 

  • Duncan RE, Bennett DW, Evans AT et al (1977) Radiation-induced bladder tumors. J Urol 118:43–45

    PubMed  CAS  Google Scholar 

  • Duncan W, Williams JR, Kerr GR et al (1986) An analysis of the radiation related morbidity observed in a randomized trial of neutron therapy for bladder cancer. Int J Radiat Oncol Biol Phys 12:2085–2092

    PubMed  CAS  Google Scholar 

  • Eapen L, Stewart D, Danjoux C et al (1989) Intraarterial cisplatin and concurrent radiation for locally advanced bladder cancer. J Clin Oncol 7:230–235

    PubMed  CAS  Google Scholar 

  • Edrees G, Luts A, Stewart F (1988) Bladder damage in mice after combined treatment with cyclophosphamide and X-rays. The influence of timing and sequence. Radiother Oncol 11:349–360

    PubMed  CAS  Google Scholar 

  • Efstathiou JA, Bae K, Shipley WU et al (2009) Late pelvic toxicity after bladder-sparing therapy in patients with invasive bladder cancer: RTOG 89-03, 95-06, 97-06, 99-06. J Clin Oncol 27:4055–4061

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eifel PJ, Levenback C, Wharton JT et al (1995) Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 32:1289–1300

    PubMed  CAS  Google Scholar 

  • Eifel PJ, Jhingran A, Bodurka DC et al (2002) Correlation of smoking history and other patient characteristics with major complications of pelvic radiation therapy for cervical cancer. J Clin Oncol 20:3651–3657

    PubMed  Google Scholar 

  • Eifel PJ, Winter K, Morris M et al (2004) Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol 22:872–880

    PubMed  Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  • Farah R, Chodak GW, Vogelzang NJ et al (1991) Curative radiotherapy following chemotherapy for invasive bladder carcinoma (a preliminary report). Int J Radiat Oncol Biol Phys 20:413–417

    PubMed  CAS  Google Scholar 

  • Fellner C, Potter R, Knocke TH et al (2001) Comparison of radiography- and computed tomography-based treatment planning in cervix cancer in brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol 58:53–62

    PubMed  CAS  Google Scholar 

  • Feng M, Hanlon AL, Pisansky TM et al (2007) Predictive factors for late genitourinary and gastrointestinal toxicity in patients with prostate cancer treated with adjuvant or salvage radiotherapy. Int J Radiat Oncol Biol Phys 68:1417–1423

    PubMed  Google Scholar 

  • Gardner BG, Zietman AL, Shipley WU et al (2002) Late normal tissue sequelae in the second decade after high dose radiation therapy with combined photons and conformal protons for locally advanced prostate cancer. J Urol 167:123–126

    PubMed  CAS  Google Scholar 

  • Goodman GB et al (1981) Conservation of bladder function in patients with invasive bladder cancer treated by definitive irradiation and selective cystectomy. Int J Radiat Oncol Biol Phys 7(5):569–573

    Google Scholar 

  • Green N, Treible D, Wallack H (1990) Prostate cancer: post-irradiation incontinence. J Urol 144:307–309

    PubMed  CAS  Google Scholar 

  • Greskovich FJ, Zagars GK, Sherman NE et al (1991) Complications following external beam radiation therapy for prostate cancer: an analysis of patients treated with and without staging pelvic lymphadenectomy. J Urol 146:798–802

    PubMed  CAS  Google Scholar 

  • Gschwend JE, May F, Paiss T et al (1996) High-dose pelvic irradiation followed by ileal neobladder urinary diversion: complications and long-term results. Br J Urol 77:680–683

    PubMed  CAS  Google Scholar 

  • Hellebust TP, Dale E, Skjonsberg A et al (2001) Inter fraction variations in rectum and bladder volumes and dose distributions during high dose rate brachytherapy treatment of the uterine cervix investigated by repetitive CT-examinations. Radiother Oncol 60:273–280

    PubMed  CAS  Google Scholar 

  • Holloway CL, Macklin E, Cormack RA et al (2008) Should the organs at risk be contoured in vaginal cuff brachytherapy? An analysis of within-patient variance. Brachytherapy 1:11

    Google Scholar 

  • Horwich A, Dearnaley D, Huddart R et al (2005) A randomised trial of accelerated radiotherapy for localised invasive bladder cancer. Radiother Oncol 75:34–43

    PubMed  Google Scholar 

  • International Commission on Radiation Units and Measurements (1985) Dose and volume specification for reporting intracavitary therapy in gynecology: ICRU 38, vol 38. Bethesda

    Google Scholar 

  • Jakse G, Fritsch E, Frommhold H (1989) Concurrent adriamycin and radiotherapy in locally advanced bladder cancer. Br J Urol 63:64–67

    PubMed  CAS  Google Scholar 

  • Jani AB, Su A, Correa D et al (2007) Comparison of late gastrointestinal and genitourinary toxicity of prostate cancer patients undergoing intensity-modulated versus conventional radiotherapy using localized fields. Prostate Cancer Prostatic Dis 10:82–86

    PubMed  CAS  Google Scholar 

  • Jhingran A, Sam M, Salehpour M et al (2005) A pilot study to evaluate consistency of bladder filling and vaginal movement in patients receiving pelvic IMRT. In: Proceedings of the 87th annual meeting of the American radium society, Barcelona

    Google Scholar 

  • Kaldor JM, Day NE, Kittelmann B et al (1995) Bladder tumours following chemotherapy and radiotherapy for ovarian cancer: a case-control study. Int J Cancer 63:1–6

    PubMed  CAS  Google Scholar 

  • Karlsdottir A, Muren LP, Wentzel-Larsen T et al (2008) Late gastrointestinal morbidity after three-dimensional conformal radiation therapy for prostate cancer fades with time in contrast to genitourinary morbidity. Int J Radiat Oncol Biol Phys 70:1478–1486

    Google Scholar 

  • Kirisits C, Potter R, Lang S et al (2005) Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62:901–911

    PubMed  Google Scholar 

  • Kirisits C, Siebert FA, Baltas D et al (2007) Accuracy of volume and DVH parameters determined with different brachytherapy treatment planning systems. Radiother Oncol 84:290–297

    PubMed  Google Scholar 

  • Klein FA, Smith MJ (1983) Urinary complications of cyclophosphamide therapy: etiology, prevention, and management. South Med J 76:1413–1416

    PubMed  CAS  Google Scholar 

  • Kottmeier HL (1964) Complications following radiation therapy in carcinoma of the cervix and their treatment. Am J Obstet Gynecol 88:854–866

    PubMed  CAS  Google Scholar 

  • Kuban DA, Tucker SL, Dong L et al (2008) Long-term results of the m. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70:67–74

    PubMed  Google Scholar 

  • Kubota Y, Shuin T, Miura T et al (1984) Treatment of bladder cancer with a combination of hyperthermia, radiation and bleomycin. Cancer 53:199–202

    PubMed  CAS  Google Scholar 

  • Kucera H, Enzelsberger H, Eppel W et al (1987) The influence of nicotine abuse and diabetes mellitus on the results of primary irradiation in the treatment of carcinoma of the cervix. Cancer 60:1–4

    PubMed  CAS  Google Scholar 

  • Laramore GE et al (1984) Radiation Therapy Oncology Group Phase I-II study on fast neutron teletherapy for carcinoma of the bladder. Cancer 54(3):432–429

    Google Scholar 

  • Lawton CA, Won M, Pilepich MV et al (1991) Long-term treatment sequelae following external beam irradiation for adenocarcinoma of the prostate: analysis of RTOG studies 7506 and 7706. Int J Radiat Oncol Biol Phys 21:935–939

    PubMed  CAS  Google Scholar 

  • Lebesque JV, Bruce AM, Kroes AP et al (1995) Variation in volumes, dose–volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of T3 prostate cancer. Int J Radiat Oncol Biol Phys 33:1109–1119

    PubMed  CAS  Google Scholar 

  • Levine LA, Richie JP (1989) Urological complications of cyclophosphamide. J Urol 141:1063–1069

    PubMed  CAS  Google Scholar 

  • Liauw SL, Sylvester JE, Morris CG et al (2006) Second malignancies after prostate brachytherapy: incidence of bladder and colorectal cancers in patients with 15 years of potential follow-up. Int J Radiat Oncol Biol Phys 66:669–673

    PubMed  Google Scholar 

  • Lindholt J, Hansen PT (1986) Prostatic carcinoma: complications of megavoltage radiation therapy. Br J Urol 58:52–54

    PubMed  CAS  Google Scholar 

  • Ling CC, Schell MC, Working KR et al (1987) CT-assisted assessment of bladder and rectum dose in gynecological implants. Int J Radiat Oncol Biol Phys 13:1577–1582

    PubMed  CAS  Google Scholar 

  • Litwin MS, Hays RD, Fink A et al (1995) Quality-of-life outcomes in men treated for localized prostate cancer. JAMA 273:129–135

    PubMed  CAS  Google Scholar 

  • Logsdon MD, Eifel PJ (1999) Figo IIIB squamous cell carcinoma of the cervix: an analysis of prognostic factors emphasizing the balance between external beam and intracavitary radiation therapy. Int J Radiat Oncol Biol Phys 43:763–775

    PubMed  CAS  Google Scholar 

  • Logue J, McBain CA (2005) Radiation therapy for muscle-invasive bladder cancer: treatment planning and delivery. Clin Oncol (R Coll Radiol) 17:508–513

    CAS  Google Scholar 

  • Lundbeck F, Djurhuus JC, Vaeth M (1989a) Bladder filling in mice: an experimental in vivo model to evaluate the reservoir function of the urinary bladder in a long term study. J Urol 141:1245–1249

    PubMed  CAS  Google Scholar 

  • Lundbeck F, Ulso N, Overgaard J (1989b) Cystometric evaluation of early and late irradiation damage to the mouse urinary bladder. Radiother Oncol 15:383–392

    PubMed  CAS  Google Scholar 

  • Mameghan H, Fisher RJ, Watt WH et al (1992) The management of invasive transitional cell carcinoma of the bladder. Results of definitive and preoperative radiation therapy in 390 patients treated at the Prince of Wales Hospital, Sydney, Australia. Cancer 69:2771–2778

    PubMed  CAS  Google Scholar 

  • Mangar SA, Foo K, Norman A et al (2006) Evaluating the effect of reducing the high-dose volume on the toxicity of radiotherapy in the treatment of bladder cancer. Clin Oncol (R Coll Radiol) 18:466–473

    CAS  Google Scholar 

  • Marcial VA et al (1985) Split-course radiotherapy of carcinoma of the urinary bladder stages C and D1. A Radiation Therapy Oncology Group Study. Am J Clin Oncol 8(3):185–199

    Google Scholar 

  • Marks LB, Carroll PR, Dugan TC et al (1995) The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys 31:1257–1280

    PubMed  CAS  Google Scholar 

  • Michalski JM, Purdy JA, Winter K et al (2000) Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. Int J Radiat Oncol Biol Phys 46:391–402

    PubMed  CAS  Google Scholar 

  • Miralbell R, Nouet P, Rouzaud M et al (1998) Radiotherapy of bladder cancer: relevance of bladder volume changes in planning boost treatment. Int J Radiat Oncol Biol Phys 41:741–746

    Google Scholar 

  • Mitchell DG, Snyder B, Coakley F et al (2006) Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 24:5687–5694

    PubMed  Google Scholar 

  • Moon K, Stukenborg GJ, Keim J et al (2006) Cancer incidence after localized therapy for prostate cancer. Cancer 107:991–998

    PubMed  Google Scholar 

  • Moonen L, van der Voet H, Horenblas S et al (1997) A feasibility study of accelerated fractionation in radiotherapy of carcinoma of the urinary bladder. Int J Radiat Oncol Biol Phys 37:537–542

    PubMed  CAS  Google Scholar 

  • Muren LP, Smaaland R, Dahl O (2003) Organ motion, set-up variation and treatment margins in radical radiotherapy of urinary bladder cancer. Radiother Oncol 69:291–304

    PubMed  Google Scholar 

  • Parkin DE, Davis JA, Symonds RP (1987) Long-term bladder symptomatology following radiotherapy for cervical carcinoma. Radiother Oncol 9:195–199

    PubMed  CAS  Google Scholar 

  • Peeters ST, Heemsbergen WD, van Putten WL et al (2005) Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 to 78 Gy. Int J Radiat Oncol Biol Phys 61:1019–1034

    PubMed  Google Scholar 

  • Peeters ST, Heemsbergen WD, Koper PC et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24:1990–1996

    PubMed  Google Scholar 

  • Pelloski CE, Palmer M, Chronowski GM et al (2005) Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62:131–137

    PubMed  Google Scholar 

  • Perdona S, Autorino R, Damiano R et al (2008) Bladder-sparing, combined-modality approach for muscle-invasive bladder cancer: a multi-institutional, long-term experience. Cancer 112:75–83

    PubMed  Google Scholar 

  • Perez CA, Breaux S, Bedwinek JM et al (1984) Radiation therapy alone in the treatment of carcinoma of the uterine cervix. II. Analysis of complications. Cancer 54:235–246

    PubMed  CAS  Google Scholar 

  • Perez CA, Grigsby PW, Lockett MA et al (1999) Radiation therapy morbidity in carcinoma of the uterine cervix: dosimetric and clinical correlation. Int J Radiat Oncol Biol Phys 44:855–866

    PubMed  CAS  Google Scholar 

  • Pilepich MV, Perez CA, Walz BJ et al (1981) Complications of definitive radiotherapy for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 7:1341–1348

    PubMed  CAS  Google Scholar 

  • Pilepich MV, Krall JM, Sause WT et al (1987) Correlation of radiotherapeutic parameters and treatment related morbidity in carcinoma of the prostate—analysis of RTOG study 75-06. Int J Radiat Oncol Biol Phys 13:351–357

    PubMed  CAS  Google Scholar 

  • Pointon RS, Read G and Greene D (1985) A randomised comparison of photons and 15 MeV neutrons for the treatment of carcinoma of the bladder. Br J Radiol 58(687):219–224

    Google Scholar 

  • Pos FJ, van Tienhoven G, Hulshof MC et al (2003) Concomitant boost radiotherapy for muscle invasive bladder cancer. Radiother Oncol 68:75–80

    PubMed  Google Scholar 

  • Potter R, Haie-Meder C, Van Limbergen E et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78:67–77

    PubMed  Google Scholar 

  • Potter R, Dimopoulos J, Georg P et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83:148–155

    PubMed  Google Scholar 

  • Pourquier H, Delard R, Achille E et al (1987) A quantified approach to the analysis and prevention of urinary complications in radiotherapeutic treatment of cancer of the cervix. Int J Radiat Oncol Biol Phys 13:1025–1033

    PubMed  CAS  Google Scholar 

  • Quilty PM, Duncan W (1986) Primary radical radiotherapy for T3 transitional cell cancer of the bladder: an analysis of survival and control. Int J Radiat Oncol Biol Phys 12:853–860

    PubMed  CAS  Google Scholar 

  • Quilty PM, Kerr GR (1987) Bladder cancer following low or high dose pelvic irradiation. Clin Radiol 38:583–585

    PubMed  CAS  Google Scholar 

  • Quilty PM, Duncan W, Kerr GR (1985) Results of a randomised study to evaluate influence of dose on morbidity in radiotherapy for bladder cancer. Clin Radiol 36:615–618

    PubMed  CAS  Google Scholar 

  • Raghavan D, Pearson B, Duval P, Rogers J, Watt WH, Teriana N, Mameghan H, Boulas J (1989) Systemic therapy for genitourinary cancers. Yearbook Medical, Chicago

    Google Scholar 

  • Rodel C, Grabenbauer GG, Kuhn R et al (2002) Combined-modality treatment and selective organ preservation in invasive bladder cancer: long-term results. J Clin Oncol 20:3061–3071

    PubMed  Google Scholar 

  • Roeske JC, Forman JD, Mesina CF et al (1995) Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 33:1321–1329

    PubMed  CAS  Google Scholar 

  • Romanenko A, Morimura K, Wei M et al (2002) DNA damage repair in bladder urothelium after the Chernobyl accident in Ukraine. J Urol 168:973–977

    PubMed  Google Scholar 

  • Roof K, Mazal A, Sarkar S, Zietman A, Chen G, Shipley W (2004) A 3-D CT based analysis of inter-fraction bladder motion during radiotherapeutic treatment of bladder cancer. Int J Radiat Oncol Biol Phys 60 (Suppl 1):S430

    Google Scholar 

  • Rotman M, Aziz H, Porrazzo M et al (1990) Treatment of advanced transitional cell carcinoma of the bladder with irradiation and concomitant 5-fluorouracil infusion. Int J Radiat Oncol Biol Phys 18:1131–1137

    PubMed  CAS  Google Scholar 

  • Russell KJ, Boileau MA, Higano C et al (1990) Combined 5-fluorouracil and irradiation for transitional cell carcinoma of the urinary bladder. Int J Radiat Oncol Biol Phys 19:693–699

    PubMed  CAS  Google Scholar 

  • Sauer R, Dunst J, Altendorf-Hofmann A et al (1990) Radiotherapy with and without cisplatin in bladder cancer. Int J Radiat Oncol Biol Phys 19:687–691

    PubMed  CAS  Google Scholar 

  • Schoeppel SL, LaVigne ML, Martel MK et al (1994) Three-dimensional treatment planning of intracavitary gynecologic implants: analysis of ten cases and implications for dose specification. Int J Radiat Oncol Biol Phys 28:277–283

    PubMed  CAS  Google Scholar 

  • Scholten AN, Leer JW, Collins CD et al (1997) Hypofractionated radiotherapy for invasive bladder cancer. Radiother Oncol 43:163–169

    PubMed  CAS  Google Scholar 

  • Schreiber H, Oehlert W, Kugler K (1969) Regeneration and proliferation kinetics of normal and x-irradiated transitional epithelium in the rat. Virchows Arch 4:30–44

    CAS  Google Scholar 

  • Schultheiss TE, Lee WR, Hunt MA et al (1997) Late GI and GU complications in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 37:3–11

    PubMed  CAS  Google Scholar 

  • Shipley WU, Rose MA, Perrone TL et al (1985) Full-dose irradiation for patients with invasive bladder carcinoma: clinical and histological factors prognostic of improved survival. J Urol 134:679–683

    PubMed  CAS  Google Scholar 

  • Shipley WU, Prout GR Jr, Einstein AB et al (1987) Treatment of invasive bladder cancer by cisplatin and radiation in patients unsuited for surgery. JAMA 258:931–935

    PubMed  CAS  Google Scholar 

  • Shipley WU, Kaufman DS, Zehr E et al (2002) Selective bladder preservation by combined modality protocol treatment: long-term outcomes of 190 patients with invasive bladder cancer. Urology 60:62–67, discussion 67–68

    Google Scholar 

  • Shipley WU, Bae K, Efstathiou JA et al (2007) Late pelvic toxicity following bladder-sparing therapy in patients with invasive bladder cancer: analysis of RTOG 89-03, 95-06, 97-06, 99-06. Int J Radiat Oncol Biol Phys 62(3):S8

    Google Scholar 

  • Skala M, Rosewall T, Dawson L et al (2007) Patient-assessed late toxicity rates and principal component analysis after image-guided radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 68:690–698

    PubMed  Google Scholar 

  • Stehman FB, Ali S, Keys HM et al (2007) Radiation therapy with or without weekly cisplatin for bulky stage 1B cervical carcinoma: follow-up of a gynecologic oncology group trial. Am J Obstet Gynecol 197:503 e501–e506

    Google Scholar 

  • Stewart FA (1985) The proliferative and functional response of mouse bladder to treatment with radiation and cyclophosphamide. Radiother Oncol 4:353–362

    PubMed  CAS  Google Scholar 

  • Stewart FA (1986) Mechanism of bladder damage and repair after treatment with radiation and cytostatic drugs. Br J Cancer 7:280–291

    CAS  Google Scholar 

  • Stewart FA, Michael BD, Denekamp J (1978) Late radiation damage in the mouse bladder as measured by increased urination frequency. Radiat Res 75:649–659

    PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J, Hirst DG (1980) Proliferation kinetics of the mouse bladder after irradiation. Cell Tissue Kinet 13:75–89

    PubMed  CAS  Google Scholar 

  • Stewart FA, Randhawa VS, Michael BD et al (1981) Repair during fractionated irradiation of the mouse bladder. Br J Radiol 54:799–804

    PubMed  CAS  Google Scholar 

  • Stewart FA, Randhawa VS, Michael BD (1984) Multifraction irradiation of mouse bladders. Radiother Oncol 2:131–140

    PubMed  CAS  Google Scholar 

  • Stewart FA, Oussoren Y, Luts A (1990) Long-term recovery and reirradiation tolerance of mouse bladder. Int J Radiat Oncol Biol Phys 18:1399–1406

    PubMed  CAS  Google Scholar 

  • Stewart FA, Lundbeck F, Oussoren Y et al (1991) Acute and late radiation damage in mouse bladder: a comparison of urination frequency and cystometry. Int J Radiat Oncol Biol Phys 21:1211–1219

    PubMed  CAS  Google Scholar 

  • Stewart AJ, Cormack RA, Lee H et al (2008) A prospective clinical trial of bladder filling and 3-D dosimetry in high-dose-rate vaginal-cuff brachytherapy. Int J Radiat Oncol Biol Phys 72:843–848

    Google Scholar 

  • Stillwell TJ, Benson RC Jr (1988) Cyclophosphamide-induced hemorrhagic cystitis. A review of 100 patients. Cancer 61:451–457

    PubMed  CAS  Google Scholar 

  • Stillwell TJ, Benson RC Jr, Burgert EO Jr (1988) Cyclophosphamide-induced hemorrhagic cystitis in Ewing’s sarcoma. J Clin Oncol 6:76–82

    PubMed  CAS  Google Scholar 

  • Storey MR, Pollack A, Zagars G et al (2000) Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys 48:635–642

    PubMed  CAS  Google Scholar 

  • Studer UE et al (1985) Preliminary results of a Phase I/II study with pi-meson (pion) treatment for bladder cancer. Cancer 56(8):1943–1952

    Google Scholar 

  • Talcott JA, Rieker P, Propert KJ et al (1997) Patient-reported impotence and incontinence after nerve-sparing radical prostatectomy. J Natl Cancer Inst 89:1117–1123

    PubMed  CAS  Google Scholar 

  • Talcott JA, Slater JD, Zietman AL et al (2008) Long-term quality of life after conventional-dose versus high-dose radiation for prostate cancer: results from a randomized trial (PROG 95-09). J Clin Oncol 26:585–591

    Google Scholar 

  • Turner SL, Swindell R, Bowl N et al (1997) Bladder movement during radiation therapy for bladder cancer: implications for treatment planning. Int J Radiat Oncol Biol Phys 39:355–360

    PubMed  CAS  Google Scholar 

  • Vanuytsel L, Ang KK, Vandenbussche L et al (1986) Radiotherapy in multiple fractions per day for prostatic carcinoma: late complications. Int J Radiat Oncol Biol Phys 12:1589–1595

    PubMed  CAS  Google Scholar 

  • Vargas C, Yan D, Kestin LL et al (2005) Phase II dose escalation study of image-guided adaptive radiotherapy for prostate cancer: use of dose–volume constraints to achieve rectal isotoxicity. Int J Radiat Oncol Biol Phys 63:141–149

    PubMed  Google Scholar 

  • Viswanathan AN, Cormack R, Holloway CL et al (2006) Magnetic resonance-guided interstitial therapy for vaginal recurrence of endometrial cancer. Int J Radiat Oncol Biol Phys 66:91–99

    PubMed  Google Scholar 

  • Viswanathan AN, Dimopoulos J, Kirisits C et al (2007) Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys 68:491–498

    PubMed  Google Scholar 

  • Viswanathan AN, Yorke ED, Marks LB et al (2010) Radiation dose–volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys 76:S116–S122

    PubMed  PubMed Central  Google Scholar 

  • Vora SA, Wong WW, Schild SE et al (2007) Analysis of biochemical control and prognostic factors in patients treated with either low-dose three-dimensional conformal radiation therapy or high-dose intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 68:1053–1058

    PubMed  CAS  Google Scholar 

  • Wein AJ (1987) Lower urinary tract function and pharmacologic management of lower urinary tract dysfunction. Urol Clin N Am 14:273–296

    CAS  Google Scholar 

  • Whitney CW, Sause W, Bundy BN et al (1999) Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a gynecologic oncology group and southwest oncology group study. J Clin Oncol 17:1339–1348

    PubMed  CAS  Google Scholar 

  • Xiong L, Viswanathan A, Stewart AJ et al (2006) Deformable structure registration of bladder through surface mapping. Med Phys 33:1848–1856

    PubMed  Google Scholar 

  • Yavuz AA, Yavuz MN, Ozgur GK et al (2003) Accelerated superfractionated radiotherapy with concomitant boost for invasive bladder cancer. Int J Radiat Oncol Biol Phys 56:734–745

    PubMed  Google Scholar 

  • Yu WS et al (1985) Bladder carcinoma. Experience with radical and preoperative radiotherapy in 421 patients. Cancer 56(6):1293–1299

    Google Scholar 

  • Zelefsky MJ, Aschkenasy E, Kelsen S et al (1997) Tolerance and early outcome results of postprostatectomy three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 39:327–333

    PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Fuks Z, Hunt M et al (2001) High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol 166:876–881

    PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Chan H, Hunt M et al (2006) Long-term outcome of high dose intensity modulated radiation therapy for patients with clinically localized prostate cancer. J Urol 176:1415–1419

    PubMed  Google Scholar 

  • Zelefsky MJ, Levin EJ, Hunt M et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129

    PubMed  Google Scholar 

  • Zietman AL, Sacco D, Skowronski U et al (2003) Organ conservation in invasive bladder cancer by transurethral resection, chemotherapy and radiation: results of a urodynamic and quality of life study on long-term survivors. J Urol 170:1772–1776

    PubMed  Google Scholar 

  • Zoubek J, McGuire EJ, Noll F et al (1989) The late occurrence of urinary tract damage in patients successfully treated by radiotherapy for cervical carcinoma. J Urol 141:1347–1349

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William U. Shipley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mak, R.H., Viswanathan, A.N., Shipley, W.U. (2014). Urinary Bladder. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT • Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75863-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75863-1_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75862-4

  • Online ISBN: 978-3-540-75863-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics