Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. Nat Bur Stand, Washington DC

    Google Scholar 

  • Abreu VJ, Schmitt GA, Hays PB, Dachev TP (1982) Volume emission rate profiles of the 6300-A tropical nightglow obtained from the AE-E satellite: latitudinal and seasonal variations. J Geophys Res 87A:6346–6352

    Google Scholar 

  • Agashe VV, Pawar VR, Aher GR, Nighut DN, Jahangir A (1989) Study of mesopause temperature and its behaviour from OH nightglow. Indian J Radio Space Phys 18:309–314

    Google Scholar 

  • Akmamedov Kh (1993) Interferometric measurements of the temperature of the F2 region of the ionosphere during the period of the Iranien earthquake of June 20, 1990. Geomagn Aeron 33:135–138

    Google Scholar 

  • Akmamedov Kh, Pertsev NN, Romanova NN, Semenov AI, Chefranov SG, Shalimov SL, Shefov NN (1996) Possible mechanism of temperature rise in the F2-region of the ionosphere during the Iran earthquake of June 20, 1990. Geomagn Aeron 36:228–231

    Google Scholar 

  • Apostolov EM, Letfus V (1985) Quasi-biennial oscillations of the green corona intensity. Bull Astron Inst Czechosl 36:199–205

    Google Scholar 

  • Bakanas VV, Perminov VI (2003) Some features in the seasonal behavior of the hydroxyl emission characteristics in the upper atmosphere. Geomagn Aeron 43:363–369

    Google Scholar 

  • Bakanas VV, Perminov VI, Semenov AI (2003) Seasonal variations of emission characteristics of the mesopause hydroxyl with different vibrational excitation. Adv Space Res 32:765–770

    Google Scholar 

  • Baker DJ, Stair AT (1988) Rocket measurements of the altitude distribution of the hydroxyl airglow. Physica Scripta 37:611–622

    Google Scholar 

  • Barbier D (1959a) Recherches sur la raie 6300 de luminescence atmosphèrique nocturne. Ann Géophys 15:179–217

    Google Scholar 

  • Barbier D (1959b) Sur les variations systematiques des intensités des pricipales radiations de lumière du ciel nocturne à l’observatoire de Haute Provence. Ann Géophys 15:412–414

    Google Scholar 

  • Barbier D (1961) Les variations d’intensité de la raie 6300 Å de la luminescence nocturne. Ann Géophys 17:3–15

    Google Scholar 

  • Barbier D, Dufay J, Williams D (1951) Recherches sur l’émission de la raie verte de la lumière du ciel nocturne. Ann d’Astrophys 13:399–437

    Google Scholar 

  • Barnett JJ, Corney N (1985) Middle atmosphere reference model derived from satellite data. In: Labitzke K, Barnett JJ, Edwards B (eds) Handbook for MAP, vol 16. SCOSTEP, Urbana, pp 47–85

    Google Scholar 

  • Bates DR (1981) The green light of the night sky. Planet Space Sci 29:1061–1067

    Google Scholar 

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapour. J Geophys Res 55:301–327

    Google Scholar 

  • Batista P, Clemesha BR, Simonich DM (1990) Seasonal variations in mesospheric sodium tidal activity. J Geophys Res 95D:7435–7442

    Google Scholar 

  • Batista PP, Takahashi H, Clemesha BR (1994) Solar cycle and QBO effect on the mesospheric temperature and nightglow emissions at a low latitude station. Adv Space Res 14:221–224

    Google Scholar 

  • Benedict WS, Plyler EK, Humphreys CJ (1953) The emission spectrum of OH from 1.4 to 1.7 μ. J Chem Phys 21:398–402

    Google Scholar 

  • Berg MA, Shefov NN (1962a) Emission of the hydroxyl bands and the (0,1) λ 8645 Å atmospheric band of oxygen in the nightglow. Planet Space Sci 9:167–171

    Google Scholar 

  • Berg MA, Shefov NN (1962b) OH emission and atmospheric O2 band λ 8645 A. In: Krassovsky VI (ed) Aurorae and airglow. N 9. USSR Acad Sci Publ House, Moscow, pp 46–52

    Google Scholar 

  • Berg MA, Shefov NN (1963) OH emission and atmospheric O2 band λ 8645 Å. In: Krassovsky VI (ed) Aurorae and airglow. N 10. USSR Acad Sci Publ House, Moscow, pp 10–23

    Google Scholar 

  • Berthier P (1955) Variations saisonnières de l’intensité des bandes de molecules OH et O2 atmosphérique dans la luminescence du ciel nocturne. Compt Rend. 240:1796–1798

    Google Scholar 

  • Berthier P (1956) Étude spectrophotométrique de la luminescence nocturne des bandes des molecules OH et O2 Atmosphérique. Ann Géophys 12:113–143

    Google Scholar 

  • Biondi MA, Feibelman WA (1968) Twilight and nightglow spectral line shapes of oxygen λ 6300 and λ 5577 radiation. Planet Space Sci 16:431–443

    Google Scholar 

  • Birnside BG, Tepley CA (1990) Airglow intensities observed in the Southern and Northern hemispheres. Planet Space Sci 38:1161–1177

    Google Scholar 

  • Blamont JE, Luton JM, Nisbet JS (1974) Global temperature distribution from OGO-6 6300 Å airglow measurements. Radio Sci 9:247–251

    Google Scholar 

  • Bronshten VA, Dagaev MM, Kononovich EV, Kulikovsky PG (1981) Astronomical calendar. Invariable part. Abalakin VK (ed). Nauka, Moscow

    Google Scholar 

  • Bronshten VA, Grishin NI (1970) Noctilucent clouds. Nauka, Moscow

    Google Scholar 

  • Burns AG, Killeen TL, Wang W, Roble RG (2004) The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J Atmos Solar—Terr Phys 66:1–14

    Google Scholar 

  • Chamberlain JW (1961) Physics of the aurora and airglow. Academic Press, New York

    Google Scholar 

  • Chandra S, Jackman CH, Fleming EL, Russell JM III (1997) The seasonal and long term changes in mesospheric water vapor. Geophys Res Lett 24:639–642

    Google Scholar 

  • Chapman S (1939) Notes on atmospheric sodium. Astrophys J 90:309–316

    Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides. Reidel, Dordrecht-Holland

    Google Scholar 

  • Christophe-Glaume J (1965) Étude de la raie 5577 Å de l’oxygène dans la luminescence atmospherique nocturne. Ann Géophys 21:1–57

    Google Scholar 

  • Chunchuzov IP (1988) Orographic waves in the atmosphere produced by a varying wind. Izv USSR Acad Sci Atmos Oceanic Phys 24:5–12

    Google Scholar 

  • Chunchuzov IP (1994) On possible generation mechanism for nonstationary mountain waves in the atmosphere. J Atmos Sci 15:2196–2206

    Google Scholar 

  • Chunchuzov YeP, Shagaev MV (1983) Estimates of the coefficient of vertical turbulent diffusion in the lower thermosphere. Izv USSR Acad Sci Atmos Oceanic Phys 20:154–155

    Google Scholar 

  • Cierpka K, Kosch MJ, Holma H, Kavanagh AJ, Hagfors TL (2003) Novel Fabry–Perot interferometer measurements of F-region ion temperature. Geophys Res Lett 30:1293,doi: 10.1029/2002GL015833

    Google Scholar 

  • CIRA (1972). COSPAR International Reference Atmosphere. Stickland AC (ed). Akademie-Verlag, Berlin

    Google Scholar 

  • Clayton HH (1884a) A lately discovered meteorological cycle. I. Am Meteorol J 1:130–143

    Google Scholar 

  • Clayton HH (1884b) A lately discovered meteorological cycle. II. Am Meteorol J 1:528–534

    Google Scholar 

  • Clemesha BR, Takahashi H (1995) Rocket-borne measurements of horizontal structure in the OH (8.3) and NaD airglow emissions. Adv Space Res 17:81–84

    Google Scholar 

  • Clemesha BR, Simonich DM, Batista PP (1992) A long-term trend in the height of the atmospheric sodium layer: possible evidence for global change. Geophys Res Lett 19:457–460

    Google Scholar 

  • Clemesha BR, Simonich DM, Takahashi H, Melo SML (1993) A simultaneous measurement of the vertical profiles of sodium nightglow in the upper atmosphere. Geophys Res Lett 20:1347–1350

    Google Scholar 

  • Clough HW (1924) A systematically varying period with an average length of 28 months in weather and solar phenomena. Mon Weather Rev 52:421–439

    Google Scholar 

  • Clough HW (1928) The 28-month period in solar activity and corresponding periods in magnetic and meteorological data. Mon Weather Rev 56:251–264

    Google Scholar 

  • Cocks TD, Jacka F (1979) Daytime thermospheric temperatures, winds velocities and emission intensities derived from ground based observations of OI λ 630 nm airglow line profiles. J Atmos Terr Phys 41:409–415

    Google Scholar 

  • Davis TN, Smith LL (1965) Latitudinal and seasonal variations in the night airglow. J Geophys Res 70:1127–1138

    Google Scholar 

  • Deans AG, Shepherd GG, Evans WFJ (1976) A rocket measurement of the O2 (b1ςg + → X3ςg -) atmospheric band nightglow altitude distribution. Geophys Res Lett 3:441–444

    Google Scholar 

  • Dodd JA, Blumberg WAM, Lipson SJ, Lowell JR, Armstrong PS, Smith DR, Nadile RM, Wheeler NB, Huppi ER (1993) OH (v, N) column densities from high-resolution Earthlimb spectra. Geophys. Res. Lett. 20:305–308

    Google Scholar 

  • Dodd JA, Lipson SJ, Armstrong PS, Blumberg WAM, Nadile RM, Adler-Golden SM, Marinelli WJ, Holtzclaw KW, Green BD (1994) Analysis of hydroxyl earthlimb airglow emissions: kinetic model for state-to-state dynamics of OH (v, N). J. Geophys. Res. 99:3559–3585

    Google Scholar 

  • Dufay M (1959) Étude photoélectrique du spectre du ciel nocturne dans le proche infra-rouge. Ann Géophys 15:134–151

    Google Scholar 

  • Dufay J, Tcheng M-L (1946) Recherches spectrophotométriques sur la lumière du ciel nocturne dans la région visible.1. Ann Géophys 2:189–230

    Google Scholar 

  • Dufay J, Tcheng M-L (1947a) Recherches spectrophotométriques sur la lumière du ciel nocturne dans la région visible. 2. Ann Géophys 3:153–183

    Google Scholar 

  • Dufay J, Tcheng M-L (1947b) Recherches spectrophotométriques sur la lumière du ciel nocturne dans la région visible. 3. Ann Géophys 3:282–305

    Google Scholar 

  • Ebel A (1980) Eddy diffusion models for mesosphere and lower thermosphere. J Atmos Terr Phys 42:102–104

    Google Scholar 

  • Elvey CT, Farnsworth AH (1942) Spectrophotometric observations of the light of the night sky. Astrophys J 96:451–467

    Google Scholar 

  • Espy PJ, Stegman J (2002) Trends and variability of mesospheric temperature at high-latitudes. Phys Chem Earth 27:543–553

    Google Scholar 

  • Evlashin LS, Shefov NN, Ponomarev VM (1996) Spectral energy distribution of auroral emission based on model concepts. Geomagn Aeron 36:660–666

    Google Scholar 

  • Evlashin LS, Semenov AI, Shefov NN (1999) Long-term variations in the thermospheric temperature and density on the basis of an analysis of Störmer’s aurora-height measurements. Geomagn Aeron 39:241–245

    Google Scholar 

  • Fadel KhM, Semenov AI, Shefov NN, Sukhodoev VA, Martsvaladze NM (2002) Quasibiennial variations in the temperatures of the mesopause and lower thermosphere and solar activity. Geomagn Aeron 42:191–195

    Google Scholar 

  • Fagundes PR, Sahai Y, Bittencourt JA, Takahashi H (1995) Observations of thermospheric neutral winds and temperatures at Cachoeira Paulista (23ˆS, 45ˆW) during a geomagnetic storms. Adv Space Res 16:27–30

    Google Scholar 

  • Fishkova LM (1955) Intensity variations of the night sky luminosity in the near infrared region. In: Kharadze EK (ed) Bull Abastumani Astrophys Observ N 15: pp 3–23

    Google Scholar 

  • Fishkova LM (1976) Regular nocturnal and seasonal variations of the emission intensity of OH, NaD, 5577 Å of the upper atmosphere. In: Krassovsky VI (ed) Aurorae and airglow. N 24. Soviet Radio, Moscow, pp 5–15

    Google Scholar 

  • Fishkova LM (1978) About oscillations of intensity of night emission of the upper atmosphere in the periods of stratospheric warming up. Geomagn Aeron 18:549–550

    Google Scholar 

  • Fishkova LM (1979) Nocturnal sodium emission in the Earth’s upper atmosphere. In: Problems of the atmospheric optics. Leningrad State Univ, Leningrad, pp 154–172

    Google Scholar 

  • Fishkova LM (1981) On variations of vibrational level populations of excited OH molecules in the upper atmosphere. In: Galperin YuI (ed) Aurorae and airglow. N 29. Radio and Svyaz, Moscow, pp 9–21

    Google Scholar 

  • Fishkova LM (1983) The night airglow of the Earth mid-latitude upper atmosphere. In: Shefov NN (ed). Metsniereba, Tbilisi

    Google Scholar 

  • Fishkova LM, Toroshelidze TI (1989) The reflection of seismic activity in night sky glow variations. In: Feldstein YaI, Shefov NN (eds) Aurorae and airglow. N 33. VINITI, Moscow, pp 17–23

    Google Scholar 

  • Fishkova LM, Gokhberg MB, Pilipenko VA (1985) Relationship between night airglow and seismic activity. Ann Geophys 3:679–694

    Google Scholar 

  • Fishkova LM, Martsvaladze NM, Shefov NN (2000) Patterns of variations in the OI 557.7-nm. Geomagn Aeron 40:782–786

    Google Scholar 

  • Fishkova LM, Martsvaladze NM, Shefov NN (2001a) Long-term variations of the nighttime upper-atmosphere sodium emission. Geomagn Aeron 41:528–532

    Google Scholar 

  • Fishkova LM, Martsvaladze NM, Shefov NN (2001b) Seasonal variations in the correlation of atomic oxygen 557.7-nm emission with solar activity and in long-term trend. Geomagn Aeron 41:533–539

    Google Scholar 

  • Forbes JM, Geller MA (1972) Lunar semidiurnal variation in OI (5577 Å) nightglow. J Geophys Res 77:2942–2947

    Google Scholar 

  • Frank LA, Signarth JB, Craven JD (1986) On the flux of small comets in to the Earth’s upper atmosphere. I. Observations. Geophys Res Lett 13:303–306

    Google Scholar 

  • Fukuyama K (1976) Airglow variations and dynamics in the lower thermosphere and upper mesosphere—I. Diurnal variations and its seasonal dependency. J Atmos Terr Phys 38:1279–1287

    Google Scholar 

  • Fukuyama K (1977a) Airglow variations and dynamics in the lower thermosphere and upper mesophere—II. Seasonal and long-term variations. J Atmos Terr Phys 39:1–14

    Google Scholar 

  • Fukuyama K (1977b) Airglow variations and dynamics in the lower thermosphere and upper mesosphere—III. Variations during stratospheric warming events. J Atmos Terr Phys 39:317–331

    Google Scholar 

  • Gadsden M (1990) A secular changes in noctilucent clouds occurrence. J Atmos Terr Phys 52:247–251

    Google Scholar 

  • Gadsden M (1998) The north-west Europe data on noctilucent clouds: a survey. J Atmos Solar—Terr Phys 60:1163–1174

    Google Scholar 

  • Gadsden M (2002) Statistics of the annual counts of nights on which NLCs were seen. Mem Br Astron Assoc 45. Aurora section (Meeting “Mesospheric clouds”, Scottand, Perth, 19–22 August, 2002)

    Google Scholar 

  • Gann RG, Kaufman F, Biondi MA (1972) Interferometric study of the chemiluminescent excitation of sodium by active nitrogen. Chem Phys Lett 16:380–383

    Google Scholar 

  • Gavrilieva GA, Ammosov AA (2002a) Seasonal variations of the mesopause temperature over Yakutsk (63ˆN, 129.5ˆ). Geomagn Aeron 42:267–271

    Google Scholar 

  • Gavrilieva GA, Ammosov PP (2002b) Near-mesopause temperatures registered over Yakutia. J Atmos Solar—Terr Phys 64:985–990

    Google Scholar 

  • Givishvili GV, Leshchenko LN, Lysenko EV, Perov SP, Semenov AI, Sergeenko NP, Fishkova LM, Shefov NN (1996) Long-term trends of some characteristics of the Earth’s atmosphere. I. Experimental results. Izv Atmos Oceanic Phys 32:303–312

    Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN, Fishkova LM, Lysenko EV, Perov SP (1996) Long-term temperature trends in the middle and upper atmosphere. Geophys Res Lett 23:1741–1744

    Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN (2000) Seasonal variations of the long-term temperature trend in the mesopause region. Geomagn Aeron 40:198–200

    Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN (2001) Thermal structure of the middle and upper atmosphere (25–110 km), as an image of its climatic change and influence of solar activity. In: Beig G (ed) Long term changes and trends in the atmosphere, vol 2. New Age Int Lim Publ, New Delhi, pp 33–42

    Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN, Khomich VYu (2006) The response of the middle atmosphere temperature on the solar activity during various seasons. Phys Chem Earth 31:10–15

    Google Scholar 

  • Greer RGH, Best GT (1967) A rocket-borne photometric investigation of the oxygen lines at 5577 Å and 6300 Å, the sodium D-lines and the continuum at 5300 Å in the night airglow. Planet Space Sci 15:1857–1881

    Google Scholar 

  • Greer RGH, Llewellyn EJ, Solheim BH, Witt G (1981) The excitation of O2 (b1ςg + ) in the nightglow. Planet Space Sci 29:383–389

    Google Scholar 

  • Greer RGH, Murtagh DP, McDade IC, Dickinson PHG, Thomas L, Jenkins DB, Stegman J, Llewellyn EJ, Witt G, Mackinnon DJ, Williams ER (1986) ETON 1: A data base pertinent to the study of energy transfer in the oxygen nightglow. Planet Space Sci 34:771–788

    Google Scholar 

  • Gulledge IS, Packer DM, Tilford SC, Vanderllice JT (1968) Intensity profiles of the 6300 Å and 5577 Å OI lines in the night airglow. J Geophys Res 73:5535–5547

    Google Scholar 

  • Harris FR (1983) The atmospheric system of O2 in nightglow. EOS Trans. AGU. 64:779

    Google Scholar 

  • Hauchecorne A, Blix T, Gerndt R, Kokin GA, Meyer W, Shefov NN (1987) Large-scale coherence of the mesospheric and upper stratospheric temperature fluctuations. J Atmos Terr Phys 49:649–654

    Google Scholar 

  • Hays PB, Rusch DW, Roble RG, Walker JCG (1978) The OI 6300 Å airglow. Rev Geophys Space Res 16:225–232

    Google Scholar 

  • Helmer M, Plane JMC (1993) A study of the reaction NaO2 + O → NaO + O2: implications for the chemistry of sodium in the upper atmosphere. J Geophys Res 98D:23207–23222

    Google Scholar 

  • Hernandez G (1966) Analytical description of a Fabry–Perot photoelectric spectrometer. Appl Opt 5:1745–1748

    Google Scholar 

  • Hernandez G (1970) Analytical description of a Fabry–Perot photoelectric spectrometer. 2: Numerical results. Appl Opt 9:1591–1596

    Google Scholar 

  • Hernandez G (1974) Analytical description of a Fabry–Perot photoelectric spectrometer. 3: Off axis behavior and interference filters. Appl Opt 13:2654–2661

    Google Scholar 

  • Hernandez G (1975) Reaction broadening of the line profiles of atomic sodium in the night airglow. Geophys Res Lett 2:103–105

    Google Scholar 

  • Hernandez G (1976) Lower thermosphere temperatures determined from the line profiles of the OI 17,924–K (5577Å) emission in the night sky. 1. Long-term behaviour. J Geophys Res 81:5165–5172

    Google Scholar 

  • Hernandez G (1977) Lower thermosphere temperatures determined from the line profiles of the OI 17,924–K (5577Å) emission in the night sky. 2. Interaction with the lower atmosphere during stratospheric warming. J Geophys Res 82:2127–2131

    Google Scholar 

  • Hernandez G, Killeen TL (1988) Optical measurements of winds and kinetic temperatures in the upper atmosphere. Adv Space Res 8:149–213

    Google Scholar 

  • Hernandez G, Roble RG (1976) Direct measurements of nighttime thermospheric winds and temperatures. I. Seasonal variations during geomagnetic quiet periods. J Geophys Res 81:2065–2074

    Google Scholar 

  • Hernandez G, Roble RG (1977) Direct measurements of night-time thermospheric winds and temperatures. 3. Monthly variations during solar minimum. J Geophys Res 82:5505–5511

    Google Scholar 

  • Hernandez GJ, Silverman SM (1964) A reexamination of Lord Rayleigh’s data on the airglow 5577 (OI) emission. Planet Space Sci 12:97–112

    Google Scholar 

  • Hernandez GJ, Turtle JP (1965) Nightglow 5577 Å [OI] line kinetic temperatures. Planet Space Sci 13:901–904

    Google Scholar 

  • Hernandez G, Smith RW, Conner JF (1992) Neutral wind and temperature in the upper mesosphere above South Pole, Antarctica. Geophys Res Lett 19:53–56

    Google Scholar 

  • Hernandez G, Wiens R, Lowe RP, Shepherd GG, Fraser GJ, Smith RW, LeBlanc L, Clark M (1995) Optical determination of the vertical wavelength of propagating upper atmosphere oscillations. Geophys Res Lett 22:2389–2392

    Google Scholar 

  • Huruhata M, Nakamura T (1968) Rocket observations of emission heights of 6300 Å line in night airglow. In: Mitra AP, Jacchia LG, Newman WS (eds) Space Res, vol 8. North-Holland, Amsterdam, pp 699–704

    Google Scholar 

  • Huruhata M, Nakamura T, Steiger WR (1967) A rocket observation of (OI) 5577 Å emission and continuum at 5300 Å in night airglow. Rep Ionosph Space Res Japan 21:229–232

    Google Scholar 

  • Ievenko IB, Alekseev VN (2004) Effect of the substorm and strorm on the SAR arc dynamics: a statistical analysis. Geomagn Aeron 44:592–603

    Google Scholar 

  • Ignatiev VM (1977a) Unusual profiles of the 5577 Å and 6300 Å emissions in aurorae. Astron Circ USSR Acad Sci N 940:2–4

    Google Scholar 

  • Ignatiev VM (1977b) Peculiarities of contours of 5577 Å and 6300 Å lines in auroras. Geomagn Aeron 17:153–154

    Google Scholar 

  • Ignatiev VM, Yugov VA (1995) Interferometry of the large-scale dynamics of the high-latitudinal thermosphere. Shefov NN (ed). Yakut Sci Centre Siberian Branch RAN, Yakutsk

    Google Scholar 

  • Ignatiev VM, Nikolashkin SV (2002) The temperature of the subauroral lower thermosphere during the stratospheric warming in Januar–February and March, 2000. Geomagn Aeron 42:398–403

    Google Scholar 

  • Ignatiev VM, Yugov VA, Alekseev KV, Atlasov KV (1972) The interferometric measurements of Doppler temperature according to λ 6300 Å width in aurora. In: Fishkova LM, Kharadze EK (eds) Bull Abastumani Astrophys Observ. N 42. pp 91–96

    Google Scholar 

  • Ignatiev VM, Sivtseva LD, Yugov VA, Atlasov KV (1974) Regular variations of the hydroxyl rotational temperatures over Yakutsk. In: Physics of the upper atmosphere at high latitudes. N 2. Yakut Depart Siberian Branch USSR Acad Sci, Yakutsk, pp 22–31

    Google Scholar 

  • Ignatiev VM, Yugov VA, Atlasov KV (1975) Dissociative–recombinative profiles of the 5577 Å and 6300 Å lines in aurorae. Preprint ICPhIA. Yakut Branch Sibirean Depart USSR Acad Sci, Yakutsk

    Google Scholar 

  • Ignatiev VM, Yugov VA, Atlasov KV, Makarov GA, Borisov GV (1976) The emission 5577 Å Doppler temperature variations in aurorae. In: Krassovsky VI (ed) Aurorae and airglow. N 24. Soviet Radio, Moscow, pp 59–63

    Google Scholar 

  • Ignatiev VM, Yugov VA, Atlasov KV (1977) Auroral atmosphere temperature measurements as based on 6300 Å emission. In: Krassovsky VI (ed) Aurorae and airglow. N 25. Soviet Radio, Moscow, pp 9–12

    Google Scholar 

  • Ignatiev VM, Yugov VA, Atlasov KV (1984) Non-thermal profiles of oxygen atom emissions in auroras. In: Galperin YuI (ed) Aurorae and airglow. N 31. VINITI, Moscow, pp 134–140

    Google Scholar 

  • Ivanov VE, Kirillov AS, Mal’kov MV, Sergienko TI, Starkov GV (1993) The auroral oval boundaries and planetary model of luminous intensity. Geomagn Aeron 33:630–636

    Google Scholar 

  • Jacchia LG (1979) CIRA-1972, recent atmospheric models and improvements in progress. In: Rycroft MJ (ed) Space Res, vol 19. Pergamon Press, Oxford, pp 179–192

    Google Scholar 

  • Jacka F, Bower AR, Wilksch PA (1979) Thermospheric temperatures and winds derived from OI λ 630 nm night airglow line profiles. J Atmos Terr Phys 41:397–407

    Google Scholar 

  • Kalinin YuD (1952) On the certain problems of the secular variation studies of the terrestrial magnetism. In: Trans Institute Terr Magn Ionosph Radio Wave Prop USSR Acad Sci. N 8(18). Hydrometeoizdat, Leningrad, pp 5–11

    Google Scholar 

  • Kharchenko V, Dalgarno A, Fox JL (2005) Thermospheric distribution of fast O(1D) atoms. J Geophys Res 110A:12, doi: 10.1029/2005JA011232

    Google Scholar 

  • Killeen TL, Won YI, Niciejewski RJ, Bums AG (1995) Upper thermosphere winds and temperatures in the geomagnetic polar cap: solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies. J Geophys Res 100A:21327–21342

    Google Scholar 

  • Kimball DS (1960) A study of the aurora of 1859. Sci Rep N 6. UAG-R109. Univ Alaska, Fairbanks

    Google Scholar 

  • Kluev OF (1985) Thermospheric temperature measurement from the emissive spectra of the AlO molecules. In: Portnyagin YuI, Chasovitin YuK (eds) Trans Institute Exper Meteorol. N 16(115). Upper atmospheric physics. Hydrometeoizdat, Moscow, pp 15–25

    Google Scholar 

  • Klyatskin VI (1994) Statistical description of the diffusion of tracers in a random velocity field. Uspekhi Phys Nauk 164:531–544

    Google Scholar 

  • Kondo Y, Tohmatsu T (1976) Thermospheric temperature dependence of the atomic oxygen 6300 Å emission in the twilight airglow. J Geomagn Geoelectr 28:207–218

    Google Scholar 

  • Kononovich EV (2005) Analytical representations of mean solar activity variations during a cycle. Geomagn Aeron 45:295–302

    Google Scholar 

  • Kononovich EV, Shefov NN (2003) Fine structure of the 11-years cycles of solar activity. Geomagn Aeron 43:156–163

    Google Scholar 

  • Koomen M, Scolnik R, Tousey R (1956) Distribution of the night airglow (OI) 5577 Å and NaD layers measured from a rocket. J Geophys Res 61:304–306

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA (1972) Study of the nightglow emission λ 5577 Å for 1958–1967 in Ashkhabad. Ylym (Nauka), Ashkhabad

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA (1974) Structural peculiarities of the λ 6300 Å emission. In: Khrgian AKh (ed) Geophys Bull N 27. Nauka, Moscow, pp 35–39

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA (1975) Influence of the gravity wave on the behavior of the 5577 Å emission. In: Krassovsky VI (ed) Aurorae and airglow. N 23. Nauka, Moscow, pp 143–148

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA, Khamidulina VG (1966) The nightglow emission λ 5577 Å. In: Kalchaev KK, Shefov NN (eds). Tables and maps of isophotes. Ashkhabad, 1964. VINITI, Moscow

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA, Khamidulina VG (1968) The nightglow emission λ 5577 Å. In: Kalchaev KK, Shefov NN (eds). Tables and maps of isophotes. Ashkhabad, 1965–1966. VINITI, Moscow

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA, Khamidulina VG (1970) Intensity variations and dynamical characteristics of the spatial patches of the emission λ 5577 Å. In: Krassovsky VI (ed) Aurorae and airglow. N 18. Nauka, Moscow, pp 5–14

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA, Khamidulina VG (1972) The nightglow emission λ 5577 Å, λ 6300 Å. In: Savrukhin AP (ed). Tables and maps of isophotes. Ashkhabad, 1967. Ylym (Nauka), Ashkhabad

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA, Shefov NN (1979) Internal gravity wave registration in Ashkhabad and Zvenigorod. Geomagn Aeron 19:1116–1117

    Google Scholar 

  • Korobeynikova MP, Nasyrov GA, Toroshelidze TI, Shefov NN (1983) Some results of the simultaneous studies of the internal gravity waves at some stations. In: Lysenko IA (ed) Studies of the dynamic processes in the upper atmosphere. Hydrometeoizdat, Moscow, pp 121–123

    Google Scholar 

  • Korobeynikova MP, Chuchuzov EP, Shefov NN (1984) Horizontal eddy diffusion near the turbopause from observations of the 557.7-nm emission. Izv USSR Acad Sci Atmos Oceanic Phys 20:854–857

    Google Scholar 

  • Korobeynikova MP, Kuliyeva RN, Goshdzhanov MI, Khamidulina VG, Shamov AA (1989) Variations of night sky emissions 557.7 nm, 630 nm and Na during earthquakes. In: Feldstein YaI, Shefov NN (eds) Aurorae and airglow. N 33. VINITI, Moscow, pp 24–27

    Google Scholar 

  • Korsunova LP, Gorbunova TA, Bakaldina VD (1985) Solar activity influence on the turbopause variations. In: Lysenko IA (ed) Studies of the dynamic processes in the upper atmosphere. Hydrometeoizdat, Moscow, pp 175–179

    Google Scholar 

  • Krassovsky VI (1971) The calms and the storms in the upper atmosphere (Physics of the upper atmosphere and near-Earth space). Nauka, Moscow

    Google Scholar 

  • Krassovsky VI (1972) Infrasonic variations of the OH emission in the upper atmosphere. Ann Geophys 28:739–746

    Google Scholar 

  • Krassovsky VI, Semenov AI (1987) On the “holes” in the spatial distribution of the OI 130 nm emission of the dayglow. Cosmic Res 25:323–324

    Google Scholar 

  • Krassovsky VI, Shefov NN, Yarin VI (1962) Atlas of the airglow spectrum λ λ 3000–12400 Å. Planet Space Sci 9:883–915

    Google Scholar 

  • Krassovsky VI, Potapov BP, Semenov AI, Shagaev MV, Shefov NN, Sobolev VG, Toroshelidze TI (1977) The internal gravity waves near mesopause and hydroxyl emission. Ann Geophys 33:347–356

    Google Scholar 

  • Krassovsky VI, Potapov BP, Semenov AI, Sobolev VG, Shagaev MV, Shefov NN (1978) Internal gravity waves near mesopause. I. Results of studies of hydroxyl emission. In: Galperin YuI (ed) Aurorae and airglow. N 26. Soviet Radio, Moscow, pp 5–29

    Google Scholar 

  • Kropotkina EP (1976) Hydroxyl emission and the stratospheric meteorology at Abastumani, Zvenigorod, Loparskaya and Yakutsk. In: Krassovsky VI (ed) Aurorae and airglow. N 24. Soviet Radio, Moscow, pp 37–43

    Google Scholar 

  • Kropotkina EP, Shefov NN (1977) Tidal emission variations in the mesopause. In: Krassovsky VI (ed) Aurorae and airglow. N 25. Soviet Radio, Moscow, pp 13–17

    Google Scholar 

  • Kuzmin KI (1975) Intensity oscillations of the 5577 Å and 5893 Å emissions and geomagnetic activity. In: Krassovsky VI (ed) Aurorae and airglow. 23. Nauka, Moscow, pp 28–32

    Google Scholar 

  • Kvifte GJ (1967) Hydroxyl rotational temperatures and intensities in the nightglow. Planet Space Sci 15:1515–1523

    Google Scholar 

  • Labitzke K, van Loon H (1988) Associations between the 11-year solar cycle, the QBO and the atmosphere. P. I. The troposphere and stratosphere in the northern hemisphere in winter. J Atmos Terr Phys 50:197–206

    Google Scholar 

  • Le Texier H, Solomon S, Thomas RJ, Garcia RR (1989) OH*(7–5) Meinel band dayglow and nightglow measured by the SME limb scanning near infrared spectrometer: comparison of the observed seasonal variability with two-dimensional model simulations. Ann Geophys 7:365–374

    Google Scholar 

  • Lobzin VV, Pavlov AV (1998) Relation between emission intensity of subauroral red arcs and solar and geomagnetic activity. Geomagn Aeron 38:446–455

    Google Scholar 

  • López-González MJ, López-Moreno JJ, Rodrigo R (1992) Atomic oxygen concentration from airglow measurements of atomic and molecular oxygen emissions in the nightglow. Planet Space Sci 40:929–940

    Google Scholar 

  • López-González MJ, Murtagh DP, Espy PJ, López-Moreno JJ, Rodrigo R, Witt G (1996) A model study of the temporal behaviour of the emission intensity and rotational temperature of the OH Meinel bands for high-latitude summer conditions. Ann Geophys 14:59–67

    Google Scholar 

  • Lord R, Spencer JH (1935) The light of the night sky: analyses of the intensity variations at three stations. Proc R Soc London 151A:22–55

    Google Scholar 

  • Lowe RP (2002) Long-term trends in the temperature of the mesopause region at mid-latitudes as measured by the hydroxyl airglow. We-Heraeus seminar on trends in the upper atmosphere. Kühlungsborn, Germany. p 32

    Google Scholar 

  • Lowe RP, Lytle EA (1973) Balloon-born spectroscopic observation of the infrared hydroxyl airglow. Appl Opt 12:579–583

    Google Scholar 

  • Lowe RP, LeBlanc L (1993) Preliminary analysis of WINDI (UARS) hydroxyl data: apparent peak height. Abstracts. The 19th Ann. Europ. Meet. Atm. Stud. Opt. Meth. Kiruna, Sweden, August 10–14, 1992. Kiruna, pp 94–98

    Google Scholar 

  • Lowe RP, Perminov VI (1998) Analysis of mid-latitude ground-based and WINDII/UARS observations of the hydroxyl nightglow. 32nd Scientific Assembly of COSPAR (Japan, Nagoya, 1998). Nagoya, p 131

    Google Scholar 

  • Lowe RP, Gilbert KL, Turnbull DN (1991) High latitude summer observations of the hydroxyl airglow. Planet Space Sci 39:1263–1270

    Google Scholar 

  • Lysenko EV, Rusina VYa (2002a) Changes in the stratospheric and mesospheric thermal conditions during the last three decades: 3. Linear trends of monthly mean temperatures. Izv Atmos Oceanic Phys 38:296–304

    Google Scholar 

  • Lysenko EV, Rusina VYa (2002b) Changes in the stratospheric and mesospheric thermal conditions during the last three decades: 4. Trends in the height and temperature of the stratopause. Izv Atmos Oceanic Phys 38:305–311

    Google Scholar 

  • Lysenko EV, Rusina VYa (2003) Long-term changes in the stratopause height and temperature derived from rocket measurements at various latitudes. Int J Geomagn Aeron 4:67–81

    Google Scholar 

  • Lysenko EV, Nelidova GF, Prostova AM (1997a) Changes in the stratospheric and mesospheric thermal conditions during the last three decades: 1. The evolution of a temperature trend. Izv Atmos Oceanic Phys 33:218–225

    Google Scholar 

  • Lysenko EV, Nelidova GF, Prostova AM (1997b) Changes in the stratospheric and mesospheric thermal conditions during the last three decades: 2. The evolution of annual and semiannual temperature oscillations. Izv Atmos Oceanic Phys 33:226–233

    Google Scholar 

  • Lysenko EV, Perov SP, Semenov AI, Shefov NN, Sukhodoev VA, Givishvili GV, Leshchenko LN (1999) Long-term trends of the yearly mean temperature at heights from 25 to 110 km. Izv Atmos Oceanic Phys 35:393–400

    Google Scholar 

  • Lysenko EV, Nelidova GG, Rusina VYa (2003) Annual cycles of middle atmosphere temperature trends determined from long-term rocket measurements. Int J Geomagn Aeron 4: pp 57–65

    Google Scholar 

  • Makino T, Hagiwara Y (1971) Measurement of the altitude dependence of OH nightglow byK-10-5 rocket. Bull Inst Space Aeronaut 7:130

    Google Scholar 

  • Marchuk GI (1982) Mathematical modeling in the surrounding medium problem. Nauka, Moscow

    Google Scholar 

  • Matveeva OA, Semenov AI (1985) The results of hydroxyl emission observations during MAP/WINE period; stratospheric warmings (February, 1984). MAP/WINE Newsletter. N 3:4–5

    Google Scholar 

  • McDade IC, Llewellyn EJ (1986) The excitation of O(1S) and O2 bands in the nightglow: a brief review and preview. Can J Phys 64:1626–1630

    Google Scholar 

  • McEven DJ, Hammel GR, Williams CW (1998) Polar airglow variations over a one–half solar cycle. In: Proc. 24th annual European meeting on atmospheric studies by optical methods (August 18–22, 1997, Andenes, Norway). Sentraltrykkeriet A/S. Bodø, pp 74–76

    Google Scholar 

  • Meeus J (1982) Astronomical formulae for calculators, 2nd edn. Willmann-Bell Inc, Richmond Virginia

    Google Scholar 

  • Megrelishvili TG (1981) Regularities of the variations of the scattered light and emission of the Earth twilight atmosphere. Khrgian AKh (ed). Metsniereba, Tbilisi

    Google Scholar 

  • Megrelishvili TG, Fishkova LM (1986) The oscillations of upper atmosphere parameters with a period of about 5.5 years as given by dusk and night sky emission data. Geomagn Aeron 26:154–156

    Google Scholar 

  • Megrelishvili TG, Toroshelidze TI (1999) Long-term trend in the mesopause density as inferred from twilight spectrophotometric observations. Geomagn Aeron 39:258–260

    Google Scholar 

  • Meriwether JW, Biondi MA (1995) Optical interferometric observations of 630-nm intensities, thermospheric winds and temperatures near the geomagnetic equator. Adv Space Res 16:17–26

    Google Scholar 

  • Meriwether JW, Mirick JL, Biondi MA, Herrero FA, Fesen CG (1996) Evidence of orographic wave heating in the equatorial thermosphere at solar maximum. Geophys Res Lett 23:2177–2180

    Google Scholar 

  • Meriwether JW, Biondi MA, Herrero FA, Fesen CG, Hallenback DC (1997) Optical interferometric studies of the nighttime equatorial thermosphere: enhanced temperatures and zonal wind gradients. J Geophys Res 102A:20041–20058

    Google Scholar 

  • Merzlyakov EG, Portnyagin YuI (1999) Long-term changes in the parameters of winds in the midlatitude lower thermosphere (90–100 km) as inferred from long-term wind measurements. Izv Atmos Oceanic Phys 35:482–493

    Google Scholar 

  • Mikhalev AV, Medvedeva IV (2002) Seasonal behavior of emission from the upper atmosphere in 558 nm line of atomic oxygen. Atmos Oceanic Opt 15:993–997

    Google Scholar 

  • Mikhalev AV, Medvedeva IV, Beletsky AB, Kazimirovsky ES (2001) An investigation of the upper atmospheric optical radiation in the line of atomic oxygen 557.7 nm in East Siberia. J Atmos Solar—Terr Phys 63:865–868

    Google Scholar 

  • Miropolsky YuZ (1981) Dynamics of internal gravity waves in the ocean. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Misawa K, Takeuchi I (1976) Parallel intensity-variations of [O] 5577 Å line and O2(0–1) Atmospheric band at 8645 Å. Rep Ionosp Space Res Jpn 30:109–112

    Google Scholar 

  • Misawa K, Takeuchi I (1977) Ground observation of the O2(0–1) atmospheric band at 8645 Å and the [O] 5577 Å line. J Geophys Res 82:2410–2412

    Google Scholar 

  • Misawa K, Takeuchi I (1982) Nightglow intensity variations in the O2(0–1) atmospheric band, the Na D lines, the OH (6–2) band, the yellow-green continuum at 5750 Å and the oxygen green line. Ann Geophys 38:781–788

    Google Scholar 

  • Monfils A (1968) Spectres auroraux. Space Sci Rev 8:804–845

    Google Scholar 

  • Monin AS (1988) Theoretical principles of the geophysical hydrodynamics. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Montenbruck O, Pfleger T (2000) Astronomy on the personal computer, 4th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moreels G, Megie G, Vallance JA, Gattinger RL (1977) An oxygen–hydrogen atmospheric models and its application to the OH emission problem. J Atmos Terr Phys 39:551–570

    Google Scholar 

  • Mulyarchik TM (1959) Interferometric measurements of the line width of the λ 5577 Å [OI] in the aurorae. Izv USSR Acad Sci Ser Geophys 1902–1903

    Google Scholar 

  • Mulyarchik TM (1960a) Interferometric measurement of λ 6300 Å [OI] and λ 5198–5200 Å [NI] emissions from auroras. Dokl USSR Acad Sci 130:303–306

    Google Scholar 

  • Mulyarchik TM (1960b) Interferometric measurements of the upper atmospheric temperature from the widths of the some emission lines. Izv USSR Acad Sci Ser Geophys 449–458

    Google Scholar 

  • Mulyarchik TM, Shcheglov PV (1963) Temperature and corpuscular heating in the auroral zone. Planet Space Sci 10:215–218

    Google Scholar 

  • Munk WH (1980) Internal wave spectra at the buoyant and internal frequencies. J Phys Oceanogr 10:1718–1728

    Google Scholar 

  • Murtagh DP, Witt G, Stegman J, McDade IC, Llewellyn EJ, Harris F, Greer RGH (1990) An assessment of proposal O(1S) and O2 (b1ςg + ) nightglow excitation parameters. Planet Space Sci 38:43–53

    Google Scholar 

  • Myrabø HK (1984) Temperature variation at mesopause levels during winter solstice at 78ˆN. Planet Space Sci 32:249–255

    Google Scholar 

  • Myrabø HK (1987) Night airglow O2 (0–1) atmospheric band emission during the northern polar winter. Planet Space Sci 35:1275–1279

    Google Scholar 

  • Myrabø HK, Deehr CS, Sivjee GG (1983) Large-amplitude nightglow OH (8–3) band intensity and rotational temperature variations during 24-hour period at 78ˆN. J Geophys Res 88A:9255–9259

    Google Scholar 

  • Myrabø HK, Henriksen K, Deehr CS, Romick GJ (1984) O2 (b1ςg + -X3ςg - ) atmospheric band night airglow measurements in the northern polar cap region. J Geophys Res 89A:9148–9152

    Google Scholar 

  • Nagata T, Tohmatsu T, Ogawa T (1965) Rocket measurements of the 6300 Å and 3914 Å dayglow features. Planet Space Sci 13:1273–1282

    Google Scholar 

  • Nagata T, Tohmatsu T, Ogawa T (1968) Rocket observation of visible and ultraviolet dayglow features. J Geomagn Geoelectr 20:315–321

    Google Scholar 

  • Nasyrov GA (1967a) Peculiarities of spatial inhomogeneities of the atomic oxygen emission λ 5577 Å in the nightglow. In: Krassovsky VI (ed) Aurorae and airglow. N 13. Nauka, Moscow, pp 5–9

    Google Scholar 

  • Nasyrov GA (1967b) Spatial variations of nightglow in the region λ 5893 Å. In: Krassovsky VI (ed) Aurorae and airglow. N 13. Nauka, Moscow, pp 10–12

    Google Scholar 

  • Nasyrov GA (1970) The influence of the geomagnetic activity emissions of atomic oxygen. Geomagn Aeron 10:1112–1114

    Google Scholar 

  • Nasyrov GA (1978) On the connection of the nightglow emissions with the seismic activity. Izv Turkmenian SSR Acad Sci 119–122

    Google Scholar 

  • Nasyrov GA (2003) Statistical regularities of variations in the sodium nightglow observed in Ashkhabad during the solar activity minimum. Geomagn Aeron 43:402–404

    Google Scholar 

  • Neumann A (1990) QBO and solar activity effects on temperature in the mesopause region. J Atmos Terr Phys 52:165–173

    Google Scholar 

  • Nikolashkin SV, Ignatiev VM, Yugov VA (2001) Solar activity and QBO influence on the temperature regime of the subauroral middle atmosphere. J Atmos Solar—Terr Phys 63:853–858

    Google Scholar 

  • Novikov NN (1981) Internal gravity waves near mesopause. VI. Polar region. In: Galperin YuI (ed) Aurorae and airglow. N 29. Soviet Radio, Moscow, pp 59–67

    Google Scholar 

  • Noxon JF, Goody RM (1962) Observation of day airglow emission. J Atmos Sci 19:342–343

    Google Scholar 

  • Offermann D, Graef H (1992) Messungen der OH*—Temperatur. Promet 22:125–128

    Google Scholar 

  • Offermann D, Gerndt R, Lange G, Trinks H (1983) Variations of mesopause temperatures inEurope. Adv Space Res 3:21–23

    Google Scholar 

  • Ogawa T, Iwagami N, Nakamura M, Takano M, Tanabe H, Takeuchi A, Miyashita A, Suzuki K (1987) A simultaneous observation of the height profiles of the night airglow OI 5577 Å, O2 Herzberg and Atmospheric bands. J Geomag Geoelectr 39:211–228

    Google Scholar 

  • Packer DM (1961) Altitudes of the night airglow radiations. Ann Geophys 17:67–75

    Google Scholar 

  • Pavlov AV (1996) Mechanism of the electron density depletion in the SAR arc region. AnnGeophys 14:211–212

    Google Scholar 

  • Pavlov AV (1997) Subauroral red arcs as a conjugate phenomenon: comparison of OV1-10 satellite data with numerical calculations. Ann Geophys 15:984–998

    Google Scholar 

  • Pavlov AV (1998) Interpreting the observations of auroral red arcs in magnetically conjugate regions. Geomagn Aeron 38:803–807

    Google Scholar 

  • Pavlov AV, Pavlova NM, Drozdov AB (1999) Production rate of O(1D), O(1S) and N(2D) in the subauroral red arc region. Geomagn Aeron 39:201–205

    Google Scholar 

  • Perminov VI, Semenov AI (1992) The nonequilibrium of the rotational temperature of OH bands under high level rotational excitation. Geomagn Aeron 32:306–308

    Google Scholar 

  • Perminov VI, Semenov AI, Shefov NN, Tikhonova VV (1993) Estimates of seasonal variations in the altitude of the emitting hydroxyl layer. Geomagn Aeron 33:364–369

    Google Scholar 

  • Perminov VI, Semenov AI, Shefov NN (1998) Deactivation of hydroxyl molecule vibrational states by atomic and molecular oxygen in the mesopause region. Geomagn Aeron 38:761–764

    Google Scholar 

  • Perminov VI, Semenov AI, Bakanas VV, Zheleznov YuA, Khomich VYu (2004) Regular variations in the (0–1) band intensity of the oxygen emission atmospheric system. Geomagn Aeron 44:498–501

    Google Scholar 

  • Perminov VI, Shefov NN, Semenov AI (2007) Empirical model of variations in the emission of the molecular oxygen atmospheric system. 1. Intensity. Geomagn Aeron 47:104–108

    Google Scholar 

  • Pertsev NN, Shalimov SL (1996) The generation of atmospheric gravity waves in a seismically active region and their effect on the ionosphere. Geomagn Aeron 36:223–227

    Google Scholar 

  • Petitdidier M, Teitelbaum H (1977) Lower thermosphere emissions and tides. Planet Space Sci 25:711–721

    Google Scholar 

  • Plane JMC (1991) The chemistry of meteoric metals in the Earth’s upper atmosphere. Int Rev Phys Chem 10:55–106

    Google Scholar 

  • Plane JMC, Cox RM, Qian J, Pfenninger WM, Papen GC, Gardner CS, Espy PJ (1998) Mesospheric Na layer at extreme high latitudes in summer. J Geophys Res 103D:6381–6389

    Google Scholar 

  • Plane JMC, Gardner CS, Yu J, She CY, Garcia RR, Pumphrey HC (1999) Mesospheric Na layer at 40ˆN: modeling and observations. J Geophys Res 104D:3773–3788

    Google Scholar 

  • Potapov BP, Sobolev VG, Sukhodoev VA, Yarov BN (1983) Measurement of the height of layer of hydroxyl emission in Near-Moscow region. Geomagn Aeron 23:326–327

    Google Scholar 

  • Potapov BP, Sobolev VG, Sukhodoev VA, Yarov BN (1985) On the mutual arrangement of emissional layers of hydroxyl and OI 5577 Å in the Earth upper atmosphere. Geomagn Aeron 25:685–686

    Google Scholar 

  • Qian J, Gardner CS (1995) Simultaneous lidar measurements of mesospheric Ca, Na, and temperature profiles at Urbana, Illinois. J Geophys Res 100D:7453–7461

    Google Scholar 

  • Rao MNM, Murty GSN, Jain VC (1982) Altitude peak of (OI) 5577 in the lower thermosphere: Chapman versus Barth mechanisms. J Atmos Terr Phys 44:559–566

    Google Scholar 

  • Rakipova LR, Efimova LK (1975) Dynamics of the upper atmospheric layers. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Rapoport ZTs, Shefov NN (1974) Relations between variations of hydroxyl emission and radio wave absorption in D-region. Indian J Radio Space Phys 3:314–316

    Google Scholar 

  • Rapoport ZTs, Shefov NN (1976) Connection of the disturbed variations of the hydroxyl emission and the radio wave absorption. In: Shefov NN, Savrukhin AP (eds) Studies of the upper atmospheric emission. Ylym, Ashkhabad, pp 12–16

    Google Scholar 

  • Reed EI, Blamont JE (1967) Some results concerning the principal airglow lines as measured from the OGO-2 satellite. In: Smith–Rose RL, Bowhill SW, King JW (eds) Space Res, vol 7. North-Holland, Amsterdam, pp 337–352

    Google Scholar 

  • Reed EI, Chandra S (1975) The global characteristics of atmospheric emissions in the lower thermosphere and their aeronomic implications. J. Geophys. Res. 80:3057–3062

    Google Scholar 

  • Reisin ER, Scheer J (2002) Searching for trends in mesopause region airglow intensities and temperatures at EL Leoncito. Phys. Chem. Earth. 27:563–569

    Google Scholar 

  • Rishbet H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press. New York

    Google Scholar 

  • Roach FE, Gordon JL (1973) The light of the night sky. Reidel, Dordrecht

    Google Scholar 

  • Roach FE, Pettit HB, Williams DR, St Amand P, Davis DN (1953) A four-year study of OI 5577 Å in the nightglow. Ann d’Astrophys 16:185–205

    Google Scholar 

  • Ross MN, Christensen AB, Meng CI, Carbary JF (1992) Structure in the UV nightglow observed from low Earth orbit. Geophys Res Lett 19:985–988

    Google Scholar 

  • McDade IC, Llewellyn EJ (1986) The excitation of O(1S) and O2 bands in the nightglow: a brief review and preview. Can J Phys 64:1626–1630

    Google Scholar 

  • Reshetov BD (1973) Variability of the meteorological elements in the atmosphere. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Sahai Y, Dresñher A, Lauche H, Teixeira NR (1975) First results of 6300 Å nightglow measurements aboard a rocket launched from Natal Brazil. In: Rycroft MJ (ed) Space Res, vol 15. Akademie-Verlag, Berlin, pp 251–255

    Google Scholar 

  • Schaeffer RC, Feldman PD, Zipf EC (1972) Dayglow [OI] λ λ 6300 Å and 5577 Å lines in the early morning ionosphere. J Geophys Res 77:6828–6838

    Google Scholar 

  • Scheer J, Reisin ER (1990) Rotational temperatures for OH and O2 airglow bands measuredsimultaneously from E1 Leoncito (31ˆ48’S). J Atmos Terr Phys 52:47–57

    Google Scholar 

  • Scheer J, Reisin ER (1998) Extreme intensity variations of O2b airglow induced by tidal oscillations. Adv Space Res 21:827–830

    Google Scholar 

  • Scheer J, Reisin ER (2000) Unusually low airglow intensities in the Southern Hemisphere midlatitude mesosphere region. Earth Planets Space 52:261–266

    Google Scholar 

  • Scheer J, Reisin ER (2002) Most prominent airglow night at El Leoncito. J Atmos Solar–Terr Phys 64/8–11:1175–1181

    Google Scholar 

  • Scheer J, Reisin ER, Espy JP, Bittner M, Graef HH, Offermann D, Ammosov PP, Ignatiev VM (1994) Large-scale structures in hydroxyl rotational temperatures during DYANA. J Atmos Terr Phys 56:1701–1715

    Google Scholar 

  • Scheer J, Reisin ER, Mandrini CH (2005) Solar activity signatures in mesopause region temperatures and atomic oxygen related airglow brightness at El Leoncito, Argentina. J Atmos Solar—Terr Phys 67:145–154

    Google Scholar 

  • Schuster A (1906) On sunspot periodicities. Preliminary notice. Proc R Soc London 77A:141–145

    Google Scholar 

  • Semenov AI (1975a) Interferometric measurements of the upper atmosphere temperature. I. Application of the cooled image converters. In: Krassovsky VI (ed) Aurorae and airglow. N 23. Nauka, Moscow, pp 64–65

    Google Scholar 

  • Semenov AI (1975b) Doppler temperature and intensity of emission 6300 Å. Geomagn Aeron 15:876–880

    Google Scholar 

  • Semenov AI (1976) Interferometric measurements of the upper atmosphere temperature. III. 6300 Å emission and characteristics of the atmosphere and ionosphere. In: Krassovsky VI (ed) Aurorae and airglow. N 24. Nauka, Moscow, pp 44–51

    Google Scholar 

  • Semenov AI (1978) Interferometric measurements of the upper atmospheric temperature.V. Semi-annual temperature variations according to 6300 emission. In: Krassovsky VI (ed) Aurorae and airglow. N 27. Nauka, Moscow, pp 85–86

    Google Scholar 

  • Semenov AI (1989) The specific features of the green emission excitation process in the noctural atmosphere. In: Feldstein YaI, Shefov NN (eds) Aurorae and airglow. N 33. VINITI, Moscow, pp 74–80

    Google Scholar 

  • Semenov AI (1996) A behavior of the lower thermosphere temperature inferred from emission measurements during the last decades. Geomagn Aeron 36:655–659

    Google Scholar 

  • Semenov AI (1997) Long-term changes in the height profiles of ozone and atomic oxygen in the lower thermosphere. Geomagn Aeron 37:354–360

    Google Scholar 

  • Semenov AI (2000) Long-term temperature trends for different seasons by hydroxyl emission. Phys Chem Earth Pt B 25:525–529

    Google Scholar 

  • Semenov AI, Lysenko EV (1996) Long-term subsidence of the middle and upper atmosphere according to its ecological evolution. Environ. Radioecology and Appl. Ecology 2:3–13

    Google Scholar 

  • Semenov AI, Shefov NN (1979a) Comparison of the atmospheric temperatures according to the CIRA-72 and nightglow data. Bulgarian Geophys Studies 5:61–66

    Google Scholar 

  • Semenov AI, Shefov NN (1979b) Comparison of atmospheric temperatures according to CIRA-72 and nightglow data. In: Rycroft MJ (ed) Space Res, vol 19. Pergamon Press, Oxford, pp 203–206

    Google Scholar 

  • Semenov AI, Shefov NN (1989) The effect of internal gravity waves on the dynamics and energetics of the lower thermosphere (according to characteristics of the nightglow). In: Middle atmosphere studies. Ionospheric Researches. N 47. VINITI, Moscow, pp 24–43

    Google Scholar 

  • Semenov AI, Shefov NN (1996a) An empirical model for the variations in the hydroxyl emission. Geomagn Aeron 36:468–480

    Google Scholar 

  • Semenov AI, Shefov NN (1996b) On the possibility of extracting valuable information on climatic changes in the Earth’s atmosphere from archives of astronomical spectroscopic observations. Astron Lett 22:632–633

    Google Scholar 

  • Semenov AI, Shefov NN (1997a) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen. 1. Intensity. Geomagn Aeron 37:215–221

    Google Scholar 

  • Semenov AI, Shefov NN (1997b) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen. 2. Temperature. Geomagn Aeron 37:361–364

    Google Scholar 

  • Semenov AI, Shefov NN (1997c) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen. 3. Emitting layer altitude. Geomagn Aeron 37:470–474

    Google Scholar 

  • Semenov AI, Shefov NN (1997d) Empirical model of the variations of atomic oxygen emission 557.7 nm. In: Ivchenko VN (ed) Proc SPIE (23rd European Meeting on Atmospheric Studies by Optical Methods, Kiev, September 2–6, 1997), vol 3237. Int Soc Opt Engin, Bellingham, pp 113–122

    Google Scholar 

  • Semenov AI, Shefov NN (1999a) Empirical model of hydroxyl emission variations. Int J Geomagn Aeron 1:229–242

    Google Scholar 

  • Semenov AI, Shefov NN (1999b) Variations of the temperature and the atomic oxygen content in the mesopause and lower thermosphere region during change of the solar activity. Geomagn Aeron 39:484–487

    Google Scholar 

  • Semenov AI, Shefov NN (2003) New knowledge of variations in the hydroxyl, sodium and atomic oxygen emissions. Geomagn Aeron 43:786–791

    Google Scholar 

  • Semenov AI, Shefov NN (2005) Model of the vertical profile of the atomic oxygen concentration in the mesopause and lower ionosphere region. Geomagn Aeron 45:797–808

    Google Scholar 

  • Semenov AI, Shagaev MV, Shefov NN (1981) On the effect of orographic waves on the upper atmosphere. Izv USSR Acad Sci Atmos Oceanic Phys 17:982–984

    Google Scholar 

  • Semenov AI, Shefov NN, Fishkova LM, Lysenko EV, Perov SP, Givishvili GV, Leshchenko LN, Sergeenko NP (1996) Climatic changes in the upper and middle atmosphere. Doklady Earth Sciences 349:870–872

    Google Scholar 

  • Semenov AI, Shefov NN, Givishvili GV, Leshchenko LN, Lysenko EV, Rusina VYa, Fishkova LM, Martsvaladze NM, Toroshelidze TI, Kashcheev BL, Oleynikov AN (2000) Seasonal peculiarities of long-term temperature trends of the middle atmosphere. Dokl Earth Sci 375:1286–1289

    Google Scholar 

  • Semenov AI, Sukhodoev VA, Shefov NN (2002a) A model of the vertical temperature distribution in the atmosphere altitudes of 80–100 km that taking into account the solar activity and the long-term trend. Geomagn Aeron 42:239–244

    Google Scholar 

  • Semenov AI, Bakanas VV, Perminov VI, Zheleznov YuA, Khomich VYu (2002b) The near infrared spectrum of the emission of the nighttime upper atmosphere of the Earth. Geomagn Aeron 42:390–397

    Google Scholar 

  • Semenov AI, Shefov NN, Lysenko EV, Givishvili GV, Tikhonov AV (2002c) The seasonal peculiarities of behavior of the long-term temperature trends in the middle atmosphere at the mid-latitudes. Phys Chem Earth 27:529–534

    Google Scholar 

  • Semenov AI, Shefov NN, Perminov VI, Khomich VYu, Fadel KhM (2005) Temperature response of the middle atmosphere on the solar activity for different seasons. Geomagn Aeron 45:236–240

    Google Scholar 

  • Serafimov K (1979) Space research in Bulgaria. Bulgarian Acad Sci Publ House, Sofia

    Google Scholar 

  • Serafimov KB, Gogoshev MM (1972) On the mutual relations between line 6300 Å and region F parameters. Compt Rendu Acad Bulg Sci 25:197–200

    Google Scholar 

  • Serafimov K, Gogoshev M, Gogosheva Ts (1977) Models of the night altitudinal distribution of λ 6300 Å emission. Geomagn Aeron 17:1044–1049

    Google Scholar 

  • Shagaev MV (1978) Characteristics of hydroxyl emission variations, pointing out the processes of its excitations. In: Krassovsky VI (ed) Aurtorae and airglow. 27. Nauka, Moscow, pp 18–25

    Google Scholar 

  • Shain GA, Shain PF (1942) Methods of the variation investigations of the emission lines in the night sky spectrum. Dokl USSR Acad Sci 35:152–156

    Google Scholar 

  • Shashilova NA (1983) Neutral content of the high-latitudinal atmosphere. In: Mizun YuG (ed) Ionospheric investigations. N 35. Radio and Svyaz, Moscow, pp 25–31

    Google Scholar 

  • She CY, Yu JR, Chen H (1993) Observed thermal structure of a midlatitude mesopause. Geophys Res Lett 20:567–570

    Google Scholar 

  • Shefov NN (1959) Intensities of some twilight and night airglow emissions. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 1. USSR Acad Sci Publ House, Moscow, pp 25–29

    Google Scholar 

  • Shefov NN (1960) Intensities of some night sky emissions. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 2–3. USSR Acad Sci Publ House, Moscow, pp 57–59

    Google Scholar 

  • Shefov NN (1961) On determination of the rotational temperature of the OH bands. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, Moscow, pp 5–9

    Google Scholar 

  • Shefov NN (1967a) Some properties of the hydroxyl emission. In: Krassovsky VI (ed) Aurorae and airglow. N 13. USSR Acad Sci Publ House, Moscow, pp 37–43

    Google Scholar 

  • Shefov NN (1967b) OH emission and noctilucent clouds. In: Khvostikov IA, Witt G (eds) Noctilucent clouds. Proc Int Symp (Tallinn, 1966). VINITI, Moscow, pp 187–188

    Google Scholar 

  • Shefov NN (1968a) Behaviour of the upper atmosphere emissions during high meteoric activity. Planet Space Sci 16:134–136

    Google Scholar 

  • Shefov NN (1968b) Intensity and rotational temperature variations of the hydroxyl emission in the nightglow. Nature (London) 218:1238–1239

    Google Scholar 

  • Shefov NN (1969a) Hydroxyl emission of the upper atmosphere. I. Behaviour during solar cycle, seasons and geomagnetic disturbances. Planet Space Sci 17:797–813

    Google Scholar 

  • Shefov NN (1969b) Hydroxyl emission of the upper atmosphere. II. Effect of a sunlit atmosphere. Planet Space Sci 17:1629–1639

    Google Scholar 

  • Shefov NN (1969c) Low-latitudinal effects of the geomagnetic disturbances. II. Hydroxyl emission as an indicator of energy introducing in the atmosphere by the corpuscular bombardment. In: Obridko VN (ed) Solar-terrestrial physics. N 1. VINITI, Moscow, pp 285–288

    Google Scholar 

  • Shefov NN (1970a) On the correlation between the intensity emission of the atmospheric system of O2 and the vibrational temperature of the OH bands. Astron Circ USSR Acad Sci N 589:7–8

    Google Scholar 

  • Shefov NN (1970b) Behaviour of the upper atmosphere emissions during high meteoric activity. In: Krassovsky VI (ed) Aurorae and airglow. N 18. Nauka, Moscow, pp 21–25

    Google Scholar 

  • Shefov NN (1971a) Hydroxyl emissions of the upper atmosphere. III. Diurnal variations. Planet Space Sci 19:129–136

    Google Scholar 

  • Shefov NN (1971b) Hydroxyl emission of the upper atmosphere. IV correlation with the molecular oxygen emission. Planet Space Sci 19:795–796

    Google Scholar 

  • Shefov NN (1972a) Hydroxyl emission. Ann Geophys 28:137–143

    Google Scholar 

  • Shefov NN (1972b) Some statistical properties of the hydroxyl emission. In: Fishkova LM, Kharadze EK (eds) Bull Abastumani Astrophys Observ. N 42. pp 9–24

    Google Scholar 

  • Shefov NN (1973a) Behaviour of the hydroxyl emission during solar cycle, seasons and geomagnetic disturbances. In: Krassovsky VI (ed) Aurorae and airglow. N 20. Nauka, Moscow, pp 23–39

    Google Scholar 

  • Shefov NN (1973b) Relations between the hydroxyl emission of the upper atmosphere and the stratospheric warmings. Gerlands Beitr. Geophys 82:111–114

    Google Scholar 

  • Shefov NN (1974a) Lunar tidal variations of hydroxyl emission. Indian J Radio Space Phys 3:314–316

    Google Scholar 

  • Shefov NN (1974b) Lunar variations of hydroxyl emission. Geomagn Aeron 14:920–922

    Google Scholar 

  • Shefov NN (1975a) Results of studies of the hydroxyl emission. In: Krassovsky VI (ed) Aurorae and airglow. N 22. Soviet Radio, Moscow, pp 71–76

    Google Scholar 

  • Shefov NN (1975b) Emissive layer altitude of the atmospheric system of molecular oxygen.In: Krassovsky VI (eds) Aurorae and airglow. N 23. Nauka, Moscow, pp 54–58

    Google Scholar 

  • Shefov NN (1976) Seasonal variations of the hydroxyl emission. In: Krassovsky VI (eds) Aurorae and airglow. N 24. Nauka, Moscow, pp 32–36

    Google Scholar 

  • Shefov NN (1978a) Non-corpuscular nature of the ionospheric absorption, appearing at the middle latitudes after geomagnetic storms. In: Krassovsky VI (eds) Aurorae and airglow. N 27. Soviet Radio, Moscow, pp 36–44

    Google Scholar 

  • Shefov NN (1978b) Altitude of the hydroxyl emission layer. In: Krassovsky VI (eds) Aurorae and airglow. N 27. Soviet Radio, Moscow, pp 45–51

    Google Scholar 

  • Shefov NN (1985) Solar activity and near surface circulation as the commensurable sources of the thermal regime variations of the lower thermosphere. Geomagn Aeron 25:848–849

    Google Scholar 

  • Shefov NN (1989) The recording of wave and spotted inhomogeneities of upper atmospheric emission. In: Feldstein YaI, Shefov NN (eds) Aurorae and airglow. N 33. VINITI, Moscow, pp 81–84

    Google Scholar 

  • Shefov NN, Kropotkina EP (1975) The height variations of the λ 5577 Å emission layer. Cosmic Res 13:765–770

    Google Scholar 

  • Shefov NN, Pertsev NN (1984) Orographic disturbances of upper atmosphere emissions. In: Taubenheim J (ed) Handbook for middle atmosphere program, vol 10. SCOSTEP, Urbana, pp 171–175

    Google Scholar 

  • Shefov NN, Piterskaya NA (1984) Spectral and space–time characteristics of the background luminosity of the upper atmosphere. Hydroxyl emission. In: Galperin YuI (ed) Aurorae and airglow. N 31. VINITI, Moscow, pp 23–123

    Google Scholar 

  • Shefov NN, Semenov AI (2001) An empirical model for nighttime variations in atomic sodium emission: 2. Emitting layer height. Geomagn Aeron 41:257–261

    Google Scholar 

  • Shefov NN, Semenov AI (2002) The long-term trend of ozone at heights from 80 to 100 km at the mid-latitude mesopause for the nocturnal conditions. Phys Chem Earth 27:535–542

    Google Scholar 

  • Shefov NN, Semenov AI (2004a) Longitudinal-temporal distribution of the occurrence frequency of noctilucent clouds. Geomagn Aeron 44:259–262

    Google Scholar 

  • Shefov NN, Semenov AI (2004b) The longitudinal variations of the atomic oxygen emission at 557.7 nm. Geomagn and Aeron 44:620–623

    Google Scholar 

  • Shefov NN, Semenov AI (2004c) Spectral characteristics of the IGW trains registered in the upper atmosphere. Geomagn Aeron 44:763–768

    Google Scholar 

  • Shefov NN, Semenov AI (2006) Spectral composition of the cyclic aperiodic (quasi-biennial) variations in solar activity and the Earth’s atmosphere. Geomagn Aeron 46:411–416

    Google Scholar 

  • Shefov NN, Toroshelidze TI (1975) Upper atmosphere emission as an indicator of the dynamic processes. In: Krassovsky VI (ed) Aurorae and airglow. N 23. Nauka, Moscow, pp 42–53

    Google Scholar 

  • Shefov NN, Truttse YuL (1969) Hydrogen and hydroxyl emissions in the nightglow. In: Ann IQSY, vol 4. MIT Press, Cambridge, MA, pp 400–406

    Google Scholar 

  • Shefov NN, Yarin VI (1961) On the latitudinal dependence of the OH rotational temperature. In: Krassovsky VI (eds) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, Moscow, pp 25–28

    Google Scholar 

  • Shefov NN, Yarin VI (1962) Latitudinal and planetary variations of the OH airglow. In: Krassovsky VI (eds) Aurorae and airglow. N 9. USSR Acad Sci Publ House, Moscow, pp 19–23

    Google Scholar 

  • Shefov NN, Yurchenko OT (1970) Absolute intensities of the auroral emissions in Zvenigorod. In: Krassovsky VI (ed) Aurorae and airglow. N 18. Nauka, Moscow, pp 50–96

    Google Scholar 

  • Shefov NN, Pertsev NN, Shagaev MV, Yarov VN (1983) Orographically caused variations of upper atmospheric emissions. Izv USSR Acad Sci Atmos Oceanic Phys 19:694–698

    Google Scholar 

  • Shefov NN, Semenov AI, Pertsev NN, Sukhodoev VA, Perminov VI (1999) Spatial distribution of IGW energy inflow into the mesopause over the lee of a mountain ridge. Geomagn Aeron 39:620–627

    Google Scholar 

  • Shefov NN, Semenov AI, Yurchenko OT (2000a) Empirical model of variations in the atomic sodium nighttime emission: 1. Intensity. Geomagn Aeron 40:115–120

    Google Scholar 

  • Shefov NN, Semenov AI, Pertsev NN, Sukhodoev VA (2000b) The spatial distribution of the gravity wave energy influx into the mesopause over a mountain lee. Phys Chem Earth Pt B 25:541–545

    Google Scholar 

  • Shefov NN, Semenov AI, Yurchenko OT (2002) Empirical model of the ozone vertical distribution at the nighttime mid-latitude mesopause. Geomagn Aeron 42:383–389

    Google Scholar 

  • Shefov NN, Semenov AI, Yurchenko OT (2006) An empirical model of the 630 nm—atomic oxygen emission variations during nighttime. 1. Intensity. Geomagn Aeron 46:236–246

    Google Scholar 

  • Shepherd GG, Thuillier G, Gault WA, Solheim BH, Hersom C, Alunni M, Brun JF, Brune S, Chalot P, Cogger LL, Desaulniers DL, Evans WFJ, Gattinger RL, Girod F, Harvie D, Henn RH, Kendall DJW, Llewellyn EJ, Lowe RP, Ohrt J, Pasternak F, Peillet O, Powell I, Rochon Y, Ward WE, Wiens RH, Wimperis J (1993a) WINDII, the wind imaging interferometer on the upper atmosphere research satellite. J Geophys Res 98D:10725–10750

    Google Scholar 

  • Shepherd GG, Thuillier G, Solheim BH, Chandra S, Cogger LL, Duboin ML, Evans WFJ,Gattinger RL, Gault WA, Hersé M, Hauchecorne A, Lathuilliere C, Llewellyn EJ, Lowe RP, Teitelbaum H, Vial F (1993b) Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. Geophys Res Lett 20:1303–1306

    Google Scholar 

  • Silverman SM (1970) Night airglow phemenology. Space Sci Rev 11:344–379

    Google Scholar 

  • Sipler DP, Biondi MA (1975) Evidence for chemiexcitation as the source of the sodium nighglow. Geophys Res Lett 2:106–108

    Google Scholar 

  • Sipler DP, Biondi MA (1978) Interferometric studies of the twilight and nightglow sodium D-line profiles. Planet Space Sci 26:65–73

    Google Scholar 

  • Siskind DE, Sharp WE (1991) A comparison of measurements of the oxygen nightglow and atomic oxygen in the lower thermosphere. Planet Space Sci 39:627–639

    Google Scholar 

  • Sivjee GG, Hamwey RM (1987) Temperature and chemistry of the polar mesopause OH. J Geophys Res 92A:4663–4672

    Google Scholar 

  • Sivjee GG, Walterscheid RL, Hecht JH, Hamwey RM, Schubert G, Christensen AB (1987) Effects of atmospheric disturbances on polar mesopause airglow OH emissions. J Geophys Res 92A:7651–7656

    Google Scholar 

  • Skinner WR, Yee JH, Hays PB, Burrage MD (1998) Seasonal and local time variations in the O(1S) green line, O2 Atmospheric band, and OH Meinel band emissions as measured by the high resolution Doppler imager. Adv Space Res 21:835–841

    Google Scholar 

  • Smith RW, Hernandez G (1995) Upper atmospheric temperatures at South Pole. Adv Space Res 16:31–39

    Google Scholar 

  • Smith LL, Roach FE, McKennan JM (1968) IQSY night airglow data. Rep UAG-1. Washington, DC

    Google Scholar 

  • Starkov GV (1994a) Statistical depedences between the magnetic indices. Geomagn Aeron 34:101–103

    Google Scholar 

  • Starkov GV (1994b) Mathematical model of auroral boundaries. Geomagn Aeron 34:331–336

    Google Scholar 

  • Starkov GV, Yevlashin LS, Semenov AI, Shefov NN (2000) A subsidence of the thermosphere during 20th century according to the measurements of the auroral heights. Phys Chem Earth Pt B 25:547–550

    Google Scholar 

  • States RJ, Gardner CS (1999) Structure of the mesospheric Na layer at 40ˆN latitude: seasonal and diurnal variations. J Geophys Res 104D:11783–11898

    Google Scholar 

  • States RJ, Gardner CS (2000a) Thermal structure of the mesopause region (80–105 km) at 40ˆN latitude. Part I: seasonal variations. J Atmos Sci 57:66–77

    Google Scholar 

  • States RJ, Gardner CS (2000b) Thermal structure of the mesopause region (80–105 km) at 40ˆN latitude. Part II: diurnal variations. J Atmos Sci 57:78–92

    Google Scholar 

  • Sukhodoev VA, Yarov VI (1998) Temperature variations of the mesopause in the leeward region of the Caucasus ridge. Geomagn Aeron 38:545–548

    Google Scholar 

  • Sukhodoev VA, Pertsev NN, Reshetov LM (1989a) Variations of characteristics of hydroxyl emission caused by orographic perturbations. In: Feldstein YaI, Shefov NN (eds) Aurorae and airglow. N 33. VINITI, Moscow, pp 61–66

    Google Scholar 

  • Sukhodoev VA, Perminov VI, Reshetov LM, Shefov NN, Yarov VN, Smirnov AS, Nesterova TS (1989b) The orographic effect in the upper atmosphere. Izv USSR Acad Sci Atmos Oceanic Phys 25:681–685

    Google Scholar 

  • Sukhodoev VA, Pertsev NN, Shefov NN (1992) Formation of orographic disturbances in mesopause of mountain lee. EOS Trans AGU 73: Spring Meet Suppl 223

    Google Scholar 

  • Takahashi T, Okuda M (1974) Morphological study of the diurnal variation in the [OI] 5577 Å night airglow intensity. Sci Rep Tohoku Univ Ser 5 22:19–33

    Google Scholar 

  • Takahashi H, Batista PP (1981) Simultaneous measurements of OH(9,4), (8,3), (7,2), (6,2) and (5,1) bands in the airglow. J Geophys Res 86A:5632–5642

    Google Scholar 

  • Takahashi H, Clemesha BR, Sahai Y (1974) Nightglow OH (8,3) band intensities and rotational temperature at 23ˆS. Planet Space Sci 22:1323–1329

    Google Scholar 

  • Takahashi H, Gobbi D, Batista PP, Melo SML, Teixeira NR, Buriti RA (1998) Dynamical influence on the equatorial airglow observed from the south american sector. Adv. Space Res. 21:817–825

    Google Scholar 

  • Takahashi H, Sahai Y, Batista PP (1984) Tidal and solar cycle effects on the OI 5577 Å, Na D and OH (8–3) airglow emissions observed at 23ˆS. Planet Space Sci 32:897–902

    Google Scholar 

  • Takahashi H, Sahai Y, Batista PP (1986) Airglow O2 (1ς) atmospheric band at 8645 Å and the rotational temperature observed at 23ˆS. Planet Space Sci 34:301–306

    Google Scholar 

  • Takahashi H, Sahai Y, Teixeira NR (1990) Airglow intensity and temperature response to atmospheric wave propagation in the mesopause region. Adv Space Res 10:77–81

    Google Scholar 

  • Takahashi H, Clemesha BR, Batista PP (1995) Predominant semi-annual oscillation of the upper atmospheric airglow intensities and temperatures in the equatorial region. J Atmos Terr Phys 57:407–414

    Google Scholar 

  • Takahashi H, Clemesha BR, Simonich DM, Melo SML, Eras A, Stegman J, Witt G (1996) Rocket measurements in the equatorial airglow: MULTIFOT 92 database. J Atmos Terr Phys 58:1943–1961

    Google Scholar 

  • Takeuchi A, Tanaka K, Miyeshita A (1986) Atlas of zenith airglow radiations obtained at Kiso, Japan, 1979–1983. WDC C2, Tokyo

    Google Scholar 

  • Takeuchi A, Tanaka K, Miyeshita A (1989a) Atlas of zenith airglow radiations obtained at Kiso, Japan, 1984–1988. WDC C2, Tokyo

    Google Scholar 

  • Takeuchi A, Tanaka K, Miyeshita A (1989b) Atlas of zenith airglow radiations obtained at Kiso, Japan, 1989–1990. WDC C2, Tokyo

    Google Scholar 

  • Taranova OG (1967) Study of space–time properties of the hydroxyl emission. In: Krassovsky VI (ed) Aurorae and airglow. N 13. USSR Acad Sci Publ House, Moscow, pp 13–21

    Google Scholar 

  • Taranova OG, Toroshelidze TI (1970) On the measurements of the hydroxyl emission in twilight. In: Krassovsky VI (ed) Aurorae and airglow. N 18. Nauka, Moscow, pp 26–32

    Google Scholar 

  • Tarasenko DA (1988) The structure and circularion of the stratosphere and mesosphere of the Northern hemisphere. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Tarasova TM (1961) Direct measurements of the night sky luminosity. Astron Circ USSR Acad Sci N 222:31–32

    Google Scholar 

  • Tarasova TM (1962) Direct measurements of the night sky in the λ 8640 Å spectral region. In: Artificial satellites of the Earth. N 13. USSR Acad Sci Publ House, Moscow, pp 107–109

    Google Scholar 

  • Tarasova TM (1963) Night sky emission line intensity distribution with respect to height. In: Priester W (ed) Space Res, vol 3. North-Holland, Amsterdam, pp 162–172

    Google Scholar 

  • Tarasova TM (1967) On space correlation of night sky emission. In: Smith-Rose RL, Bowhill SW, King JW (eds) Space Res, vol 7. North-Holland, Amsterdam, pp 351–361

    Google Scholar 

  • Tarasova TM (1971) Nightglow of the atmosphere on the basis of 1967–1968 rocket measurements. Preprint. Polar Geophys Institute, Apatity

    Google Scholar 

  • Tarasova TM, Slepova VA (1964) Height distribution of radiation intensity of the night sky main emission lines. Geomagn Aeron 4:321–327

    Google Scholar 

  • Tarasova TM, Yagodkina OI, Bogdanov NN, Yevlashin LS, Mikirov AE, Shidlovsky AA (1981) Height aurora profiles in the red and visible spectrum bands from measurements on the Franz-Josef Land. In: Isaev SI, Nadubovich YuA, Yevlashin LS (eds) Aurorae and airglow. N 28. Nauka, Moscow, pp 44–47

    Google Scholar 

  • Taubenheim J (1969) Statistische Auswertung geophysikalischer und meteorologischer Daten. Akad Verlag, Leipzig

    Google Scholar 

  • Taubenheim J, Feister U (1975) Ermittlung von Characteristiken stochastischer Prozesse durch Autosynchronisation. Gerlands Beitr. Geophys 84:389–398

    Google Scholar 

  • Taylor MJ, Lowe RP, Baker DJ (1995) Hydroxyl temperature and intensity measurements during noctilucent cloud displays. Ann Geophys 13:1107–1116

    Google Scholar 

  • Thuillier G, Blamont JE (1973) Vertical red line 6300 Å distribution and tropical nightglow morphology in quiet magnetic conditions. In: McCormac BM (ed) Physics and chemistry of upper atmosphere. Reidel, Dordrecht, pp 219–231

    Google Scholar 

  • Thuillier G, Falin JL, Wachtel C (1977a) Experimental global model of the exospheric temperature based on measurements from the Fabry–Perot interferometer on board the OGO-6 satellite—discussion of the data and properties of the model. J Atmos Terr Phys 39:399–414

    Google Scholar 

  • Thuillier G, Falin JL, Barlier F (1977b) Global experimental model of the exospheric temperature using optical and incoherent scatter measurements. J Atmos Terr Phys 39:1195–1202

    Google Scholar 

  • Toroshelidze TI (1968a) Results of the spectrographic observations of the hydroxyl emission in the 10600-11200 A region in twilight. Bulletin Georgian SSR Academy of Sciences 52:N 1.57–62

    Google Scholar 

  • Toroshelidze TI (1975) Rotational temperature variations of the hydroxyl emission. In: Krassovsky VI (ed). Aurorae and Airglow. N 3. Nauka, Moscow, 33–35

    Google Scholar 

  • Toroshelidze TI (1989) The study of the temperature and winds on the basis of observations of the 630 nm emission in the evening sector of mean latitudes. In: Feldstein YaI, Shefov NN (eds) Aurorae and airglow. N 33. VINITI, Moscow, pp 11–16

    Google Scholar 

  • Toroshelidze TI (1991) The analysis of the aeronomy problems on the upper atmosphere glow. In: Shefov NN (ed). Metsniereba, Tbilisi

    Google Scholar 

  • Tousey R (1958) Rocket measurements of the night airglow. Ann Geophys 14:186–195

    Google Scholar 

  • Turnbull DN, Lowe RP (1991) Temporal variations in the hydroxyl nightglow observed during ALOHA-90. Geophys Res Lett 18:1345–1348

    Google Scholar 

  • Truttse YuL (1965) The spatial variations of the oxygen lines intensities. In: Krassovsky VI (ed) Aurorae and airglow. N 11. USSR Acad Sci Publ House, Moscow, pp 52–64

    Google Scholar 

  • Truttse Yu (1968a) Upper atmosphere during geomagnetic disturbances. I. Some regular features of low-latitude auroral emissions. Planet Space Sci 16:981–992

    Google Scholar 

  • Truttse Yu (1968b). Upper atmosphere during geomagnetic disturbances. II. Geomagnetic storms oxygen emission at 6300 Å and heating of the upper atmosphere. Planet Space Sci 16:1201–1208

    Google Scholar 

  • Truttse Yu (1972a) Oxygen emission at 6300 Å. Ann Geophys 28:169–177

    Google Scholar 

  • Truttse YuL (1972b) Night variations of intensity of emission 6300 Å in quiet geomagnetic conditions. Geomagn Aeron 12:561–564

    Google Scholar 

  • Truttse YuL (1973) Upper atmosphere during geomagnetic disturbances. In: Krassovsky VI (ed) Aurorae and airglow. N 20. Nauka, Moscow, pp 5–22

    Google Scholar 

  • Truttse YuL (1975) Oxygen emission 6300 Å during periods with the low geomagnetic activity. In: Krassovsky VI (ed) Aurorae and airglow. N 22. Nauka, Moscow, pp 60–70

    Google Scholar 

  • Truttse YuL, Belyavskaya VD (1975) Red oxygen emission λ 6300 Å and density of the upper atmosphere. Geomagn Aeron 15:101–104

    Google Scholar 

  • Truttse YuL, Belyavskaya VD (1977) Semiannual variations of the emission 6300 Å. Astron Circ USSR Acad Sci N 936:1–3

    Google Scholar 

  • Truttse YuL, Gogoshev MM (1977) Red oxygen line 6300 Å and electron content in night F-region. Dokl Bulgarian Acad Sci 30:45–48

    Google Scholar 

  • Truttse YuL, Shefov NN (1970a) Mid-latitudinal aurora on March 23–24, 1969. Astron Circ USSR Acad Sci N 562:3–5

    Google Scholar 

  • Truttse YuL, Shefov NN (1970b) On middle-latitude aurorae of the current solar maximum. Planet Space Sci 18:1850–1854

    Google Scholar 

  • Truttse YuL, Shefov NN (1971) Low-latitudinal effects of the geomagnetic disturbances. In: Geophys Bull N 23. Nauka, Moscow, pp 3–10

    Google Scholar 

  • Truttse YuL, Yurchenko OT (1971) Temperature of the upper atmosphere from the 6300 Å emission data. Planet Space Sci 19:545–546

    Google Scholar 

  • Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108A:1268, doi: 10.1029/2002JA009504

    Google Scholar 

  • Turnbull DN, Lowe RP (1983) Vibrational population distribution in the hydroxyl night airglow. Can. J. Phys. 61:244–250

    Google Scholar 

  • Vassy AT, Vassy E (1976) La luminescence nocturne. In: Rawer K (ed) Handbuch der Physik. Geophysik 111/5, vol 49/5. Springer, Berlin Heidelberg New York, pp 5–116

    Google Scholar 

  • Vincent RA, Kovalam S, Fritts DC, Isler JR (1998) Long-term MF radar observations of solar tides in the low-latitude mesosphere: interannual variability and comparisons with GSWM. J Geophys Res 103D:8667–8683

    Google Scholar 

  • Walker JD, Reed EI (1976) Behaviour of the sodium and hydroxyl nighttime emissions during a stratospheric warmings. J Atmos Sci 33:118–130

    Google Scholar 

  • Wallace L, McElroy MB (1966) The visual dayglow. Planet Space Sci 14:677–708

    Google Scholar 

  • Wang DY, Ward WE, Shepherd GG, Wu DL (2000) Stationary planetary waves inferred from WINDII wind data taken within altitudes 90–120 km during 1991–96. J Atmos Sci 57:1906–1918

    Google Scholar 

  • Wang DY, Ward WE, Solheim BH, Shepherd GG (2002) Longitudinal variations of green line emission rates observed by WINDII at altitudes 90–120 km during 1991–1996. J Atmos Solar—Terr Phys 64:1273–1286

    Google Scholar 

  • Ward WE (1999) A simple model of diurnal variations in the mesospheric oxygen nightglow. Geophys Res Lett 26:3565–3568

    Google Scholar 

  • Ward WE, Rochon YJ, McLandress C, Wang DY, Criswick JR, Solheim BH, Shepherd GG (1994) Correlations between the mesospheric O(1S) emission peak intensity and height, and temperature at 98 km using WINDII data. Adv Space Res 14:57–60

    Google Scholar 

  • Watanabe T, Morioka Y, Nakamura M (1976) Altitude distribution of the O2 and OH Meinel emissions in the nightglow. Rep Ionosph Space Res Jpn 30:41–45

    Google Scholar 

  • Watanabe T, Nakamura M, Ogawa T (1981) Rocket measurements of O2 Atmospheric and OH Meinel bands in the airglow. J Geophys Res 86A:5768–5774

    Google Scholar 

  • Wiens RH, Weill G (1973) Diurnal, annual and solar cycle variations of hydroxyl and sodium intensities in the Europe–Africa sector. Planet Space Sci 21:1011–1027

    Google Scholar 

  • WinEphem (2002) http://www.geocities.com/tmarkjames/WinEphem.html

    Google Scholar 

  • Witt G, Stegman J, Solheim BH, Llewellyn EJ (1979) A measurement of the O2 (b1ςg + -X3ςg - ) atmospheric band and the O(1S) green line in the nightglow. Planet Space Sci 27:341–350

    Google Scholar 

  • Witt G, Stegman J, Murtagh DP, McDade IC, Greer RGH, Dickinson PHG, Jenkins DB (1984) Collisional energy transfer and the excitation of O2 (b1ςg + ) in the atmosphere. J Photochem 25:365–378

    Google Scholar 

  • Woeikof A (1891) Cold and warm winter interchange. Meteorol Rep N 9:409–422

    Google Scholar 

  • Woeikof A (1895) Die Schneedecke in “paaren” und “unpaaren” Wintern. Meteorol Zeits 12:77–78

    Google Scholar 

  • Yao IG (1962) Observations of the night airglow. In: Roach FE (ed). Ann IGY, vol 24. Pergamon Press, London

    Google Scholar 

  • Yarin VI (1961a) The OH emission according to observations in Yakutsk. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, Moscow, pp 10–17

    Google Scholar 

  • Yarin VI (1961b) Continuous emission and the Herzberg O2 bands in the night airglow. In: Krassovsky VI (ed) Spectral, electrophotometrical and radar researches of aurorae and airglow. N 5. USSR Acad Sci Publ House, Moscow, pp 35–38.

    Google Scholar 

  • Yarin VI (1962a) On the dependence of intensity of OH bands on the rotational temperature. In: Krassovsky VI (ed) Aurorae and airglow. N 8. USSR Acad Sci Publ House, Moscow, pp 9–10

    Google Scholar 

  • Yarin VI (1962b) Variations of the vibrational population rates of OH molecules. In: Krassovsky VI (ed) Aurorae and airglow. N 9. USSR Acad Sci Publ House, Moscow, pp 10–18

    Google Scholar 

  • Yarin VI (1962c) On the molecular oxygen emissions in Yakutsk. In: Krassovsky VI (ed) Aurorae and airglow. N 9. USSR Acad Sci Publ House, Moscow, pp 34–43

    Google Scholar 

  • Yarin VI (1970) Connection of the hydroxyl emission with the meteorological conditions above Yakutsk. In: Krassovsky VI (ed) Aurorae and airglow. N 18. USSR Acad Sci Publ House, Moscow, pp 18–20

    Google Scholar 

  • Yee JH (1988) Non-thermal distribution of O(1D) atoms in the night-time thermosphere. Planet Space Sci 26:89–97

    Google Scholar 

  • Yee JH, Abreu VJ (1987) Mesospheric 5577 Å green line and atmospheric motions—atmospheric explorer satellite observations. Planet Space Sci 35:1389–1395

    Google Scholar 

  • Yee JH, Crowley G, Roble RG, Skinner WR, Burrage MD, Hays PB (1997) Global simulations and observations of O(1S), O2(1ς) and OH mesospheric nightglow emissions. J Geophys Res 102A:19949–19968

    Google Scholar 

  • Yevlashin LS (2005) Aperiodic variations of the observation frequency of the red type-A auroras during 11-year cycle of solar activity. Geomagn Aeron 45:388–391

    Google Scholar 

  • Yevlashina LM, Yevlashin LS (1971) Some peculiarities of the F region disturbances during red auroras of A type. In: Yevlashin LS (ed) Morphology and form of the polar ionosphere. Nauka, Leningrad, pp 137–146

    Google Scholar 

  • Yugov VA, Nikolashkin SV, Ignatiev VM (1997) Correlation of temperature in the subauroral lower thermosphere with solar activity and phases of quasi-biennial oscillations. Geomagn Aeron 37:755–758

    Google Scholar 

  • Yurchenko OT (1975) Interferometric measurements of the upper atmosphere temperature. II. 6300 Å emission variations. In: Krassovsky VI (ed) Aurorae and airglow. N 23. Nauka, Moscow, pp 66–68

    Google Scholar 

  • Zhang SP, Shepherd GG (2004) Solar influence on the O(1D) dayglow emission rate: global-scale measurements by WINDII on UARS. Geophys Res Lett 31:L07804,doi: 10.1029/2002GL019447

    Google Scholar 

  • Zhang SP, Peterson RN, Wiens RH, Shepherd GG (1993) Gravity waves from O2 nightglow during the AIDA’89 campaign. I. Emission rate/temperature observations. J Atmos Terr Phys 55:355–375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khomich, V.Y., Semenov, A.I., Shefov, N.N. (2008). Regular Variations of the Airglow in the Mesopause and Thermosphere. In: Airglow as an Indicator of Upper Atmospheric Structure and Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75833-4_4

Download citation

Publish with us

Policies and ethics