Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abalakin VK, Aksenov EP, Grebennikov EA, Demin VG, Ryabov YuA (1976) Handbook for celestial mechanics and astrodynamics, 2nd edn. Duboshin GN (ed) Nauka, Moscow

    Google Scholar 

  • Abalakin BK (1979) Principles of ephemeride astronomy. Nauka, Moscow

    Google Scholar 

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. Natl Bureau Standard, Washington

    Google Scholar 

  • Abreu VJ, Yee JH, Hays PB (1982) Galactic and zodiacal light surface brightness measurements with the Atmosphere Explorer Satellites. Appl Opt 21:2287–2290

    Google Scholar 

  • Ajello JM, Witt N (1979) Simultaneous H(1216 A) and He(584 A) observations of the interstellar wind wind by Mariner 10. In: Rycroft MJ (ed) Space Research, Vol 19. Pergamon Press, Oxford, pp 417–420

    Google Scholar 

  • Akasofu SI (1968) Polar and magnetospheric substorms. D Reidel Publ Co, Dordrecht, Holland

    Google Scholar 

  • Akasofu SI, Chapman S (1972) Solar-terrestrial physics. The Clarendon Press, Oxford

    Google Scholar 

  • Albitsky VA, Vyazanitsyn VP, Deutsch AN, Zeltser MS, Krat VA, Markov AB, Meiklyar PV, Melnikov OA, Nikonov VB, Sobolev VV, Shain GA, Sharonov VV (1951) Spectrophotometry. In: Mikhailov AA (ed) A course of astrophysics and celestial astronomy, Vol 1. Methods and instruments. Gostechizdat, Moscow, pp 462–489

    Google Scholar 

  • Albitsky VA, Melnikov OA (1973) Spectral classification of the stars. In: Mikhailov AA (ed) A course of astrophysics and celestial astronomy, Vol 1. Methods and instruments, 2nd edn. Nauka, Moscow, pp 312–329

    Google Scholar 

  • Alekseev AV, Kabanov MV, Kushtin IF, Nelyubov NF (1983) Optical refraction refraction in the terrestrial atmosphere (slanting traces). Nauka, Novosibirsk

    Google Scholar 

  • Allen CW (1955) Astrophysical quantities. The Athlone Press, London

    Google Scholar 

  • Allen CW (1973) Astrophysical quantities, 3rd edn. The Athlone Press, London

    Google Scholar 

  • Antonova LA, Ivanov-Kholodny GS (1989) Solar activity activity and ionosphere (at heights of 100–200 km). Nauka, Moscow

    Google Scholar 

  • Antonova LA, Ivanov-Kholodny GS, Chertoprud VE (1996) Aeronomy of the E layer. Yanus, Moscow

    Google Scholar 

  • Apostolov EM (1985) Quasi-biennial oscillation in sunspot activity activity. Bull Astron Inst Czechosl 36:97–102

    Google Scholar 

  • Apostolov EM, Letfus V (1985) Quasi-biennial oscillations of the green corona intensity. Bull Astron Inst Czechosl 36:199–205

    Google Scholar 

  • Astafieva NM (1996) Wavelet analysis: basic theory and some applications. Uspekhi Fiz Nauk 166:1145–1170

    Google Scholar 

  • Baliunas SL, Donahue RA, Soon WH, Horne JH, Frazer J, Woodard-Eklund L, Bradford M, Rao LM, Wilson OC, Zhang Q, Bennett W, Briggs J, Carroll SM, Duncan DK, Figueroa D, Lanning HH, Misch A, Mueller J, Noyes RW, Poppe D, Porter AC, Robinson CR, Russell J, Shelton JC, Soyumer T, Vaughan AH, Whitney JH (1995) Chromospheric variations in main-sequence stars. II. Astrophys J 438:269–287

    Google Scholar 

  • Banks PM, Kockarts G (1973a) Aeronomy. Pt A. Academic Press, New York

    Google Scholar 

  • Banks PM, Kockarts G (1973b) Aeronomy. Pt B. Academic Press, New York

    Google Scholar 

  • Baranov DG, Vernova ES, Tyasto MI, Alaniya MV (2001) Features of the time behavior of the amplitude of 27-day variations in galactic cosmic rays galactic cosmic rays. Geomagn Aeronomy 41:162–167

    Google Scholar 

  • Bateman G, Erdélyi A (1953) Higher transcendential functions. McGraw-Hill Book Co, New York

    Google Scholar 

  • Bates DR (1982) Airglow and auroras. In: Massey HSW, Bates DR (eds) Applied atomic collision physics, Vol 1. Atmospheric physics and chemistry. Academic Press, New York, pp 149–224

    Google Scholar 

  • Bates DR (1984) Rayleigh scattering Rayleigh scattering by air. Planet Space Sci 32:785–790

    Google Scholar 

  • Beig G, Keckhut P, Lowe RP, Roble R, Mlynczak MG, Scheer J, Fomichev V, Offermann D, French WJR, Shepherd MG, Semenov AI, Remsberg E, She CY, Luebken FJ, Bremer J, Clemesha BR, Stegman J, Sigernes F, Fadnavis S (2003) Review of mesospheric temperature temperature trends. Rev Geophys 41:1015. doi:10.1029/2002RG000121

    Google Scholar 

  • Blackwell DE, Ingham MF (1961) Observations of the Zodiacal Light Zodiacal Light from a very high altitude station. I. The average Zodiacal Light Zodiacal Light. Mon Not Roy Astron Soc 122:113–176

    Google Scholar 

  • Bocharova NYu, Nusinov AA (1983) On the possibility of a forecast of radio emission flux from individual active regions and the entire solar solar disc. Solar data Bulletin N 1. Nauka, Leningrad, pp 106–110

    Google Scholar 

  • Bolunova AD, Mulyarchik TM, Shuiskaya FK (1977) Transfer of the escaping photoelectrons in the magnetosphere magnetosphere. Cosmic Res 15:445–454

    Google Scholar 

  • Bossy L (1983) Solar indices and solar solar u.v.-radiations. Planet Space Sci 31:977–985

    Google Scholar 

  • Bossy L, Nicolet M (1981) On the variability of Lyman-alpha with solar solar activity activity. Planet Space Sci 29:907–914

    Google Scholar 

  • BothmerV, Veselovsky IS, Dmitriev AV, Zhukov AN, Cargill P, Romashets EP, Yukovchuk OS (2002) Solar and heliospheric reasons for geomagnetic geomagnetic perturbations during the growth phase of solar solar cycles. Solar System Res 36:539–547

    Google Scholar 

  • Boulanger F, Pérault M (1988) Diffuse infrared emission from the Galaxy. 1. Solar neighborhood. Astrophys J 330:964–985

    Google Scholar 

  • Bowyer CS, Livingston PM, Price RD (1968) Upper limits to the 304 and 584 A night helium glow. ?J Geophys Res 73:1107–1111

    Google Scholar 

  • Bronshten VA, Dagaev MM, Kononovich EV, Kulikovsky PG (1981) Astronomical calendar. Invariable part, 7th edn. Abalakin VK (ed) Nauka, Moscow

    Google Scholar 

  • Bruevich EA, Katsova MM, Sokolov DD (2001) Coronal and chromospheric activity activity of late-type stars and types of dynamo waves. Astron Rep 78:827–838

    Google Scholar 

  • Budyko MI, Golitsyn GS, Izrael YuA (1986) Global climatic catastrophes. Hydrometeoizdat, Moscow

    Google Scholar 

  • Chamberlain JW (1961) Physics of the Aurora and Airglow. Academic Press, New York

    Google Scholar 

  • Chamberlain JW (1978) Theory of planetary atmospheres. Academic Press, New York

    Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides tides. D Reidel Publ Co, Dordrecht, Holland

    Google Scholar 

  • Chistyakov VF (1997) Solar cycles and the climate variations. Trans Ussurysk phys observ, N 1. Dalnauka, Vladivostok, pp 1–156

    Google Scholar 

  • Chunchuzov YeP (1978) On energy balance characteristics of the internal gravity waves internal gravity waves observed from hydroxyl emission near the mesopause. Izvestiya USSR Acad Sci Atmos Oceanic Phys 14:770–772

    Google Scholar 

  • Cebula RP, Feldman PD (1982) Ultraviolet spectroscopy of the Zodiacal light. Astrophys J 263:987–992

    Google Scholar 

  • Chumak OV, Kononovich EV, Krasotkin SA (1998) Prognosis of the next two solar solar cycles. Astron Astrophys Trans 17:41–44

    Google Scholar 

  • CIRA-1972. COSPAR International Reference Atmosphere. Stickland AC (ed) Akademie-Verlag, Berlin

    Google Scholar 

  • CIRA-1986 (1990) COSPAR International Reference Atmosphere: 1986. Part II: Middle Atmosphere Models, Rees D, Barnett JJ, Labitzke K Adv Space Res 10:1–525

    Google Scholar 

  • Clayton HH (1884a) A lately discovered meteorological cycle. I. Amer Meteorol J 1:130–143

    Google Scholar 

  • Clayton HH (1884b) A lately discovered meteorological cycle. II. Amer Meteorol J 1:528–534

    Google Scholar 

  • Cleveland BT, Daily T, Davis R, Distel JR, Lande K, Lee CK, Wildenhain PS, Ullman J (1998) Measurement of the solar solar neutrino neutrino flux with the Homestake chlorine detector. Astrophys J 496:505–511

    Google Scholar 

  • Clough HW (1924) A systematically varying period with an average length of 28 months in weather and solar solar phenomena. Mon Weather Rev 52:421–439

    Google Scholar 

  • Clough HW (1928) The 28-month period in solar solar activity activity and corresponding periods in magnetic and meteorological data. Mon Weather Rev 56:251–264

    Google Scholar 

  • Cole KD (1963) Eccentric dipole coordinates dipole coordinates. Austral J Phys 16:423–429

    Google Scholar 

  • Danilov DL, Zhigljavsky AA (1997) Principal components of the time series: “Caterpillar” method. S. Peterburg University Press, S. Peterburg

    Google Scholar 

  • Davies K (1969) Ionospheric radio waves. Blaisdell Publ Co, Waltham, Massachusetts

    Google Scholar 

  • Davis R (2002) A half-century with solar solar neutrinos. Les Prix Nobel. Nobel Lectures 2002. http://nobelprize.org/nobelprizes/physics/laureates/2002/davis-lecture.pdf

    Google Scholar 

  • Desaubies YJF (1973) Internal waves near the turning point. Geophys Fluid Dyn 5:143–154

    Google Scholar 

  • Divari NB (1951) Stellar component of the night sky night sky luminosity. Astron Rep 28:163–171

    Google Scholar 

  • Divari NB (2003) Zodiacal light. Astroprint, Odessa

    Google Scholar 

  • Eddy JA (1976) The Maunder minimum. Science 192:1189–1202

    Google Scholar 

  • Espy PJ, Stegman J (2002) Trends and variability of mesospheric temperature temperature at high–latitudes. Phys Chem Earth Earth 27:543–553

    Google Scholar 

  • Evlashin LS, Semenov AI, Shefov NN (1999) Long-term variations in the thermospheric temperature temperature and density density on the basis of an analysis of Störmer’s aurora-height measurements. Geomagn Aeronomy 39:241–245

    Google Scholar 

  • Fadel KhM, Semenov AI, Shefov NN, Sukhodoev VA, Martsvaladze NM (2002) Quasibiennial variations in the temperature temperatures of the mesopause and lower thermosphere thermosphere and solar solar activity activity. Geomagn Aeronomy 42:191–195

    Google Scholar 

  • Fatkullin MN (1982) Physics of the ionosphere. In: Total results of the Science and Technique. Geomagnetism and upper layers of the atmosphere, Vol 6.VINITI, Moscow, pp 4–224

    Google Scholar 

  • Fedorov VV, Glazkov VN, Bugaeva IV, Tarasenko DA (1994) On the connection between the quasi biennial oscillations of the equatorial circulation and the atmospheric parameter variations. Meteorol Hydrolo N 10:24–30

    Google Scholar 

  • Feldstein YaI, Lukina LV, Shevnina NF (1968) Aurora during the minimum and maximum cycle of solar solar activity activity. In: Isaev SI, Feldstein YaI (eds) Aurorae. N 17. Nauka, Moscow, pp 50–58

    Google Scholar 

  • Fishkova LM (1983) The night airglow of the Earth Earth mid-latitude upper atmosphere. Shefov NN (ed) Metsniereba, Tbilisi

    Google Scholar 

  • Flynn BC, Vallerga JV, Gladstone GR, Edelstein J (1998) Lunar reflectively from extreme ultraviolet explorer imaging and spectroscopy of the full Moon Moon. Geophys Res Lett 25:3253–3256

    Google Scholar 

  • Fomichev VI, Shved GM (1988) Planetary distribution of the total radiative heating effect in the middle atmosphere middle atmosphere and sequences for the atmospheric dynamics. In: Lysenko IA (ed) Studies of the dynamic processes in the upper atmosphere. Hydrometeoizdat, Moscow, pp 40–43

    Google Scholar 

  • French WJR, Burns GB (2004) The influence of large-scale Oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica. J Atmos Solar-Terr Phys 66:493–506

    Google Scholar 

  • French WJR, Burns GB, Finlayson K, Greet PA, Lowe RP, Williams PFB (2000) Hydroxyl (6–2) airglow emission intensity ratios for rotational rotational temperature temperature determination. Ann Geophys 18:1293–1303

    Google Scholar 

  • Galperin YuI (1975) Polar auroras in the magnetosphere magnetosphere. Ser. Astronautics, astronomy. Znanie, Moscow

    Google Scholar 

  • Garcia RR, Solomon S, Roble RG, Rusch DW (1984) A numerical response of the middle atmosphere middle atmosphere to the 11-year solar solar cycle. Planet Space Sci 32:411–423

    Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, New York

    Google Scholar 

  • Gnevyshev MN (1963) A corona and 11-year cycle of the solar solar activity activity. Astron Rep 40:401–412

    Google Scholar 

  • Gnevyshev MN (1977) Essential features of the 11-year solar solar cycle. Solar Phys 51:175–183

    Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN, Fishkova LM, Lysenko EV, Perov SP (1996) Long-term temperature trends in the middle and upper atmosphere. Geophys Res Lett 23:1741–1744

    Google Scholar 

  • Golitsyn GS, Semenov AI, Shefov NN, Khomich VYu (2006) The response of the middle atmosphere middle atmosphere temperature temperature on the solar solar activity activity during various seasons. Phys Chem Earth Earth 31:10–15

    Google Scholar 

  • Gruzdev AN, Bezverkhnii VA (1999) Long-term variations in the quasi-biennial oscillation of the equatorial stratospheric wind wind. Izvestiya Atmos Oceanic Phys 35:700–711

    Google Scholar 

  • Gruzdev AN, Bezverkhnii VA (2003) On sources of the quasi-biennial oscillation of the atmosphere of the northern hemisphere. Dokl Earth Earth Sci 389A:416–419

    Google Scholar 

  • Gruzdev AN, Bezverkhnii VA (2005) Quasi biennial cyclicity in the atmosphere over Northern America according to ozone sounding data. Izvestiya Atmos Oceanic Phys 41:36–50

    Google Scholar 

  • Hapke BW (1963) A theoretical photometric function for the lunar surface. J Geophys Res 68:4571–4586

    Google Scholar 

  • Hapke B (1971) Optical properties of the lunar surface. In: Kopal Z (ed) Physics and astronomy of the Moon Moon. Academic Press, pp 166–229

    Google Scholar 

  • Hathaway DH, Wilson RM, Reichmann EJ (1994) The shape of the sunspot cycle. Solar Phys 151:177–190

    Google Scholar 

  • Haubold YJ, Gerth E (1983) Zeitlich periodische Variationen des solar solaren Neutrinoflusses und das Standardmodell der Sonne. Astron Nachr 304:299–304

    Google Scholar 

  • Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology and trends of the middle atmospheric temperature temperature (33–87) as seen by Rayleigh lidar over the south of France. J Geophys Res 96D:15297–15309

    Google Scholar 

  • Heath DF, Thekaekara MP (1977) Solar spectrum spectrum in the 1200–3000 A region. In: White OR (ed) The solar solar output and its variation. University Press, Boulder, pp 212–232

    Google Scholar 

  • Hedin AE (1991) Extension of the MSIS thermospheric model into the middle and lower atmosphere. J Geophys Res 96A:1159–1172

    Google Scholar 

  • Herman JR, Goldberg RA (1978) Sun Sun, weather and climate. NASA, Washington

    Google Scholar 

  • Hines CO (1974) The upper atmosphere in motion. Heffernan Press, Worcester, Massachusetts

    Google Scholar 

  • Hinteregger HE (1981) Representations of solar solar EUV fluxes for aeronomical applications. Adv Space Res 1:39–52

    Google Scholar 

  • Hinteregger HE, Fukui K, Gilson BR (1981) Observational, references and model data on solar solar EUV, from measurements on AE-E. Geophys Res Lett 8:1147–1150

    Google Scholar 

  • Hultqvist B (1958) The spherical harmonic development of the geomagnetic geomagnetic field, epoch 1945, transformed into rectangular geomagnetic geomagnetic coordinate systems. Arkiv Geofysik 3:53–64

    Google Scholar 

  • Ivanov AV (1994) A closer definition of the lunar optical characteristics in the visible spectral region. Optical J N 4:159–160

    Google Scholar 

  • Ivanov-Kholodny GS, Chertoprud VE (1992) Analysis of extrema of quasi-biennial variations of the solar solar activity activity. Astron Astrophys Trans 3:81–84

    Google Scholar 

  • Ivanov-Kholodny GS, Mikhailov AV (1980) Ionospheric state forecast. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Ivanov-Kholodny GS, Nikol’sky GM (1969) Sun Sun and ionosphere. Nauka, Moscow

    Google Scholar 

  • Ivanov-Kholodny GS, Nusinov AA (1987) Ultraviolet radiation of the Sun Sun and its influence on the upper atmosphere and ionosphere. In: Total results of the Science. Investigations of the cosmic processes, Vol 26. VINITI, Moscow, pp 80–154

    Google Scholar 

  • Ivanov-Kholodny GS, Nepomnyashchaya EV, Chertoprud VE (2000a) Variability of the parameters of quasi-two-year variations in the Earth’s ionosphere in the 11-year cycle. Geomagn Aeronomy 40:526–528

    Google Scholar 

  • Ivanov-Kholodny GS, Mogilevskii EI, Chertoprud VE (2000b) Quasi-biennial oscillations in total solar solar irradiance and in the Earth’s ionospheric parameters. Geomagn Aeronomy 40:565–569

    Google Scholar 

  • Jacchia LG (1979) CIRA-1972, recent atmospheric models and improvements in progress. In: Rycroft MJ (ed) Space Research, Vol 19. Pergamon Press, Oxford, pp 179–192

    Google Scholar 

  • Kalinin YuD (1952) On the certain problems of the secular variation studies of the terrestrial magnetism. In: Trans Institute Terrestrial Magnetism, Ionosphere and Radio Wave Propagations. USSR Acad Sci, N 8(18). Hydrometeoizdat, Leningrad, pp 5–11

    Google Scholar 

  • Kandaurova KA (1971) The statistic analysis and forecast of the Zürich series of Wolf’s numbers with regular part extracted. Solar data Bulletin. N 11. Nauka, Leningrad pp 80–89

    Google Scholar 

  • Karpov KA, Chistova EA (1968) Tables of the Weber function. Ditkin VA (ed) Computer Centre USSR Acad Sci, Moscow

    Google Scholar 

  • Karyagina ZV (1960) Energy distribution in Zodiacal Light Zodiacal Light continuum. Astrophys Bull 37:882–887

    Google Scholar 

  • Kazimirovsky ES, Kokourov VD (1979) Ionospheric movements. Erofeev NM (ed) Nauka, Novosibirsk

    Google Scholar 

  • Keating GM, Tolson RH, Bradford MS (2000) Evidence of long term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects. Geophys Res Lett 27:1523–1526

    Google Scholar 

  • Khramova MN, Kononovich EV, Krasotkin SA (2002) Quasi-biennial oscillations of global solar solar-activity activity indices. Solar System Res 36:548–554

    Google Scholar 

  • Kluev OF (1985) Thermospheric temperature temperature measurement from the emissive spectra of the AlO molecules. In: Chasovitin YuK, Portnyagin YuI (eds) Trans Institute Experimental Meteorology. Upper Atmospheric Physics, N 16(115). Hydrometeoizdat, Moscow, pp 15–25

    Google Scholar 

  • Klyatskin VI (1994) Statistical description of the diffusion diffusion of tracers in a random velocity field. Uspekhi Phys Nauk 164:531–544

    Google Scholar 

  • Kolchinsky IG (1984) On the problem of the changes of the “refraction refraction constant”. In: Astrometry and Astrophysics. N 52. Mauka, Kiev, pp 38–46

    Google Scholar 

  • Kolmogorov AN (1986) On the logarithm normal law of the particle distribution during crushing. In: The probability theory and mathematical statistics. Nauka, Moscow, pp 264–267

    Google Scholar 

  • Kondratiev KYa, Nikolsky GA (1995) Solar activity activity and climate. 1. Observation data. Condensation and ozone hypotheses. Earth Earth’ Investigations from Cosmos N 5:3–17

    Google Scholar 

  • Kondratyev KYa, Nikolsky GA, Shultz EO (1996) Hourly to decadal time scale variations of the spectral and total “solar solar constant”. Meteorol Atmos 61:119–126

    Google Scholar 

  • Kononovich EV (1999) Quasi-biennial structure of the solar solar activity activity cycle. In: Proceedings of conference “Large-scale structure of the solar solar activity activity” (Pulkovo June 21–25, 1999). Pulkovo Main Astronomical Observatory RAS, S. Peterburg, pp 115–120

    Google Scholar 

  • Kononovich EV (2001) Fine structure of the 11-years cycles of solar solar activity activity. In: Proceedings of international conference “Sun Sun during epoch of the magnetic field magnetic field sign changes” (S. Peterburg), pp 203–210

    Google Scholar 

  • Kononovich EV (2003) Physics of solar solar and stellar activity activity. Abstract. Conference UIG and Baltic countries. Actual problems of the physics of the solar solar and stellar activity activity. Nizhny, Novgorod

    Google Scholar 

  • Kononovich EV (2004) Mean variations of the solar solar activity activity cycles: Analytical representations. In: Proceedings of the XXVII annual seminar “Physics of auroral phenomena”. Kola Science Center. RAS, Apatity, pp 83–86

    Google Scholar 

  • Kononovich EV (2005) Analytical representations of mean solar solar activity activity variations during a cycle. Geomagn Aeronomy 45:295–302

    Google Scholar 

  • Kononovich EV, Moroz VI (2001) Total course of astronomy. Ivanov VV (ed) Editorial-URSS, Moscow

    Google Scholar 

  • Kononovich EV, Shefov NN (1999a) The influence of solar solar activity activity on long-term climatic variations. Dokl Earth Earth Sci 367:714–717

    Google Scholar 

  • Kononovich EV, Shefov NN (1999b) The middle atmosphere middle atmosphere is a regulator of the solar solar activity activity influence on the long-term changes of the energy balance of the lower atmosphere. Geomagn Aeronomy 39:76–80

    Google Scholar 

  • Kononovich EV, Shefov NN (2003) Fine structure of the 11-years cycles of solar solar activity activity. Geomagn Aeronomy 43:156–163

    Google Scholar 

  • Kononovich EV, Shefov NN (2006) Some dependencies of the solar solar activity activity variations during 11-year cycle. Geomagn Aeromony 46:683–687

    Google Scholar 

  • Kononovich EV, Shefov NN, Khramova MN (2002) Approximation of relationships between solar solar activity activity indices: sunspot Wolf numbers and radio emission flux at a 10.7-cm wavelength. Geomagn Aeronomy 42:430–431

    Google Scholar 

  • Korn GA, Korn TM (1961) Mathematical handbook for scientist and engineers. McGraw-Hill Book Co, New York

    Google Scholar 

  • Korobochkin BI, Filippova YaA (1965) Tables of the modified Whittaker function. Computer Centre USSR Acad Sci, Moscow

    Google Scholar 

  • Korsunova LP, Gorbunova TA, Bakaldina VD (1985) Solar activity activity influence on the turbopause turbopause variations. In: Lysenko IA (ed) Studies of the dynamic processes in the upper atmosphere. Hydrometeoizdat, Moscow, pp 175–179

    Google Scholar 

  • Krasnopolsky VA (1987) Airglow physics of the planetary and comet atmospheres. Nauka, Moscow

    Google Scholar 

  • Krassovsky VI, Shefov NN (1964) Fast photoelectrons and helium emission in the upper atmosphere. Planet Space Sci 12:91–92

    Google Scholar 

  • Krassovsky VI, Shefov NN, Yarin VI (1962) Atlas of the airglow spectrum λλ 3000–12400 Å. Planet Space Sci 9:883–915

    Google Scholar 

  • Krinberg IA (1978) The electron kinetic kinetic in the ionosphere and plasmasphere. Nauka, Moscow

    Google Scholar 

  • Kropotkina EP, Shefov NN (1977) Tidal emission variations in the mesopause. In: Krassovsky VI (ed) Aurorae and airglow. N 25. Soviet Radio, Moscow, pp 13–17

    Google Scholar 

  • Kubova RM (1989) Analytical representation of invariant coordinates. Geomagn Aeronomy 29:524

    Google Scholar 

  • Kulikov KA (1969) The course of the spherical astronomy. Nauka, Moscow

    Google Scholar 

  • Kulikovsky PG (2002) The handbook for the astronomical amateur, 5th edn. Surdin VG (ed) Editorial URSS, Moscow

    Google Scholar 

  • Labitzke K, van Loon H (1988) Associations between the 11-year solar solar cycle, the QBO and the atmosphere. P. I. The troposphere troposphere and stratosphere in the northern hemisphere in winter.J Atmos Terr Phys 50:197–206

    Google Scholar 

  • Lanzerotti LJ, Raghavan RS (1981) Solar activity activity and solar solar neutrino neutrino flux. Nature (London) 293:122–124

    Google Scholar 

  • Laštovička J, Fišer V, Pancheva D (1994) Long-term trends in planetary wave activity activity (2–15 days) at 80–100 km inferred from radio wave absorption. J Atmos Terr Phys 56:893–899

    Google Scholar 

  • Laštovička J (1997) Observations of tides tides and planetary waves planetary waves in the atmosphere-ionosphere system. Adv Space Res 20:1209–1222

    Google Scholar 

  • Lean JL (1984) Estimating the variability of the solar solar flux between 200 and 300 nm. J Geophys Res 89A:1–9

    Google Scholar 

  • Lean J (1991) Variations in the Sun Sun’s radiative output. Rev Geophys 29:505–535

    Google Scholar 

  • Lean J, Beer J, Bradley R (1995) Reconstruction of solar solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198

    Google Scholar 

  • Leikin GA, Shvidkovskaya TE (1972) On the infrared radiation of the Moon Moon in the 3,5–3,9 mcm region. In: Physics of the Moon Moon and planets. Nauka, Moscow, pp 91–95

    Google Scholar 

  • Lincoln JV (1967) Geomagnetic indices. In: Matsushita S, Campbell WH (ed) Physics of geomagnetic geomagnetic phenomena, Vol 1. Academic Press, New York, pp 67–100.

    Google Scholar 

  • Lowe RP (1969) Interferometric spectra of the Earth’s airglow (1,2 to 1,6 μm. Phil Trans Roy Soc London A264:163–169

    Google Scholar 

  • Lowe RP (2002) Long-term trends in the temperature temperature of the mesopause region at mid-latitudes as measured by the hydroxyl airglow. We-Heraeus Seminar on trends in the upper atmosphere. Kühlungsborn, Germany, p 32

    Google Scholar 

  • Lübken FJ (2000) Nearly zero temperature temperature trend trend in the polar summer mesosphere. Geophys Res Lett 27:3604–3606

    Google Scholar 

  • Lysenko EV, Perov SP, Semenov AI, Shefov NN, Sukhodoev VA, Givishvili GV, Leshchenko LN (1999) Long-term trends of the yearly mean temperature temperature at heights from 25 to 110 km. Izvestiya Atmos Oceanic Phys 35:393–400

    Google Scholar 

  • Makarova EA, Kharitonov AV (1972) Energy distribution in the solar solar spectrum spectrum. Nauka, Moscow

    Google Scholar 

  • Makarova EA, Kharitonov AV, Kazachevskaya TV (1991) The solar solar radiation flux. Nauka, Moscow

    Google Scholar 

  • Manson JE (1977) Solar spectrum spectrum between 10 and 300 A. In: White OD (ed) The solar solar output and its variation. University Press, Boulder, pp 286–312

    Google Scholar 

  • Martin C, Bowyer S (1989) Evidence for an extragalactic component of the far-ultraviolet background and constraints on Galaxy evolution for 0.1<z<0.6. Astrophys J 338:677–706

    Google Scholar 

  • Massey HSW, Bates DR (1982) Atmospheric physics and chemistry. Applied atomic collision physics, Vol 1. Academic Press, New York

    Google Scholar 

  • Mayaud PN (1980) Derivation, meaning and use of the geomagnetic geomagnetic indices. Geomagnetic monograph N 22. American Geophysical Union, Washington

    Google Scholar 

  • Mikhailov AA (1974) An atlas of the stellar sky stellar sky. Nauka, Leningrad

    Google Scholar 

  • Mikhailutsa VP, Gnevyshev MN (1988) The solar solar magnetic field magnetic field energy, green corona emission and properties of a solar solar cycle. Solar data Bulletin. N 4. Nauka, Leningrad, pp 88–95

    Google Scholar 

  • Miller JCP (1955) Tables of Weber parabolic cylinder function. H.M.S.O., London

    Google Scholar 

  • Mlodnosky RP, Helliwell RA (1962) Graphic data on the Earth’s main magnetic field magnetic field in space. J Geophys Res 67:2207–2214

    Google Scholar 

  • Monin AS (1982) An introduction to the theory of climate. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Monin AS (1988) Theoretical principles of the geophysical hydrodynamics. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Montenbruck O, Pfleger T (2000) Astronomy on the personal computer, 4th edn. Springer-Verlag, Berlin

    Google Scholar 

  • Moroz VI (1965) Infrared spectrophotometry of the Moon Moon and Galilean satellites of Jupiter. Astron Rep 42:1287–1295

    Google Scholar 

  • Munk WH (1980) Internal wave spectra at the buoyant and internal frequencies. J Phys Oceanogr 10:1718–1728

    Google Scholar 

  • Murthy J, Henry RC, Feldman PD, Tennyson PD (1989) The diffuse far-ultraviolet cosmic background radiation field observed from the Space Shuttle. Astrophys J 336:954–961

    Google Scholar 

  • Murthy J, Henry RC, Feldman PD, Tennyson PD (1990) Observations of the diffuse near-UV radiation field. Astron Astrophys 231:187–198

    Google Scholar 

  • Nagovitsyn YuA (1997) A non-linear mathematical model of the solar solar cyclycity process and the possibility for the activity activity reconstruction in the past. Astron Lett 23:851–858

    Google Scholar 

  • Nagy AF, Doering JP, Peterson WK, Torr MR, Banks PM (1977) Comparison between calculated and measured photoelectron fluxes from Atmosphere Explorer C and E. J Geophys Res 82:5099–5100

    Google Scholar 

  • Namboothiri SP, Meek CE, Manson AH (1994) Variations of mean winds and solar solar tides tides in the mesosphere and lower thermosphere thermosphere over time scale ranging from 6 months to 11 yr: Saskatoon, 52°N, 107°W. J Atmos Terr Phys 56:1313–1325.

    Google Scholar 

  • Neizvestny SI (1982) A background brightness of brightness of the night sky night sky in SAO USSR Academy of Sciences. Astrophys Res 16:49–52

    Google Scholar 

  • Nicolet M (1962) Aeronomy. Preprint. Institut d’Astrophysique, Liège

    Google Scholar 

  • Nicolet M (1981) The solar solar spectral irradiance and its action in the atmospheric photodissociation photodissociation processes. Planet Space Sci 29:951–974

    Google Scholar 

  • Nielsen KP, Sigernes F, Raustein E, Deehr CS (2002) The 20-year change of the Svalbard OH–temperature temperatures. Phys Chem Earth Earth 27:555–561

    Google Scholar 

  • Nishida A (1978) Geomagnetic diagnosis of the magnetosphere magnetosphere. Springer-Verlag, Berlin

    Google Scholar 

  • Obridko VN, Shelting BD (2001) The quasi-biennial oscillations of the solar solar magnetic field magnetic field. Astron Rep 78:1146–1152

    Google Scholar 

  • Obridko VN, Shelting BD (2003) Global solar solar magnetology and reference points of the solar solar cycle. Astron Rep 80:1034–1045

    Google Scholar 

  • Offermann D, Donner M, Semenov AI (2002) Hydroxyl temperature temperatures: variability and trends.We-Heraeus Seminar on trends in the upper atmosphere. Kühlungsborn, Germany, p 38

    Google Scholar 

  • Omholt A (1971) The optical aurora. Springer-Verlag, Berlin

    Google Scholar 

  • Parkinson WD (1983) Introduction to geomagnetism. Scottish Academic Press, Edinburgh

    Google Scholar 

  • Patel VL (1977) Solar-terrestrial physics. In: Bruzek A, Durrant CJ (eds) Illustrated glossary for solar solar and solar solar-terrestrial physics. D Reidel Publ Co, Dordrecht, Holland, pp 159–205

    Google Scholar 

  • Perminov VI, Pertsev NN, Shefov NN (2002) Stationary planetary variations of the hydroxyl emission. Geomagn Aeronomy 42:610–613

    Google Scholar 

  • Petrukhin VF (1995) Long-term variations of the dynamical dynamical regime at 90–100 km above Central Europe and Eastern Siberia. Geomagn Aeronomy 35:150–152

    Google Scholar 

  • Pogoreltsev AI, Sukhanova SA (1993) Simulation of global structure of stationary planetary waves planetary waves in the mesosphere and lower thermosphere thermosphere. J Atmos Terr Phys 55:33–40

    Google Scholar 

  • Polyanin AD (2001) Handbook. Linear equations of the mathematical physics. Fizmatgiz, Moscow

    Google Scholar 

  • Ponomarev EA (1985) The mechanisms of the magnetospheric substorms. Nauka, Moscow

    Google Scholar 

  • Prudnikov AP, Brychkov YuL, Marichev OI (1981) Integrals and series. Elementary functions. Nauka, Moscow

    Google Scholar 

  • Pudovkin MI, Raspopov OM (1992) The mechanism of action of solar solar activity activity on state of the lower atmosphere and meteorological parameters (a review). Geomagn Aeronomy 32:593–608

    Google Scholar 

  • Pugacheva SG, Novikov VV, Shevchenko VV (1993) The Moon Moon as a natural natural standard for calibration of spectrophotometric under-sputnik observations. Solar System Res 27:47–63

    Google Scholar 

  • PMAO (2004) Pulkovo Main Astronomical Observatory RAN. Data base of the mean annual Wolf numbers from 1090. 2004, http://www.gao.spb.ru/database/esai/

    Google Scholar 

  • Rakipova LR, Efimova LK (1975) Dynamics of the upper atmospheric layers. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Rees MH (1989) Physics and chemistry of the upper atmosphere. Houghton JT, Rycroft MJ, Dessler AJ (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New York

    Google Scholar 

  • Rivin YuR, Zvereva TI (1983) Frequency content of the quasi biennial variations of the geomagnetic geomagnetic field. In: Levitin AE (ed) Solar wind wind, magnetosphere magnetosphere and geomagnetic geomagnetic field. Nauka, Moscow, pp 72–90

    Google Scholar 

  • Roach FE (1964) The light of the night sky night sky: astronomical interplanetary and geophysical. Space Sci Rev 3:512–540

    Google Scholar 

  • Roach FE, Gordon JL (1973) The light of the night sky night sky. D Reidel Publ Co, Dordrecht, Holland

    Google Scholar 

  • Roach FE, Megill LR (1961) Integrated starlight over the sky. Astrophys J 133:228–242

    Google Scholar 

  • Röser S, Staude HJ (1978) The zodiacal light from 1500 Å to 60 micron. Astron Astrophys 67:381–384

    Google Scholar 

  • Rostoker G (1972) Geomagnetic indices. Rev Geophys Space Phys 10:935–950

    Google Scholar 

  • Sakurai K (1979) Quasi-biennial variation of the solar solar neutrino neutrino flux and solar solar activity activity. Nature (London) 278:146–148

    Google Scholar 

  • Sanga-Ngoie K, Fukuyama K (1996) Interannual and long-term climate variability over the Zaire River during the last 30 years. J Geophys Res 101D:21351–21360

    Google Scholar 

  • Schatten KH (1996) An atmospheric radiative-conrective model: solar forcing. Astrophys J 460:69–72

    Google Scholar 

  • Schove DJ (1955) The sunspot cycles, 649 B.C. to A.D. 2000. J Geophys Res 60:127–146

    Google Scholar 

  • Schove DJ (1962) Auroral numbers since 500 B.C. J Brit Astron Assoc 7:30–35

    Google Scholar 

  • Schove DJ (1979) Sun Sunspot points and aurorae since AD 1510. Solar Phys 63:423–432

    Google Scholar 

  • Schove DJ (1983) Sun Sunspot cycles. Hutchinson Ross, Stroudsburg, Pennsylvania

    Google Scholar 

  • Schröder W (1997) Geomagnetism and aeronomy. Science Edition, Bremen-Roennebeck

    Google Scholar 

  • Schröder W (2000a) Long and short term variability in Sun Sun’s history and global change. Science Edition, Bremen-Roennebeck

    Google Scholar 

  • Schröder W (2000b) Aurora in time. Science Edition, Bremen-Roennebeck

    Google Scholar 

  • Schröder W (2002) Solar variability and geomagnetism. Science Edition, Bremen-Roennebeck

    Google Scholar 

  • Schröder W, Shefov NN, Treder HJ (2004) Estimation of past solar solar and upper atmosphere conditions from historical and modern auroral observations. Ann Geophys 22:2273–2276

    Google Scholar 

  • Schuster A (1906) On sunspot periodicities. Preliminary notice. Proc Roy Soc London 77:141–145

    Google Scholar 

  • Sckopke N (1966) A general relation between the energy of trapped particles and the disturbance field near the Earth Earth. J Geophys Res 71:3125–3130

    Google Scholar 

  • Semenov AI (1996) A behavior of the lower thermosphere thermosphere temperature temperature inferred from emission measurements during the last decades. Geomagn Aeronomy 36:655–659

    Google Scholar 

  • Semenov AI, Shefov NN (1996) An empirical model for the variations in the hydroxyl emission. Geomagn Aeronomy 36:468–480

    Google Scholar 

  • Semenov AI, Shefov NN (1997a) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen oxygen. 1. Intensity. Geomagn Aeronomy 37:215–221

    Google Scholar 

  • Semenov AI, Shefov NN (1997b) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen oxygen. 2. Temperature. Geomagn Aeronomy 37:361–364

    Google Scholar 

  • Semenov AI, Shefov NN (1997c) An empirical model of nocturnal variations in the 557.7-nm emission of atomic oxygen oxygen. 3. Emitting layer altitude. Geomagn Aeronomy 37:470–474

    Google Scholar 

  • Semenov AI, Shefov NN (1997d) Empirical model of the variations of atomic oxygen oxygen emission557.7 nm. In: Ivchenko VN (ed) Proceedings of SPIE (23rd European Meeting on Atmospheric Studies by Optical Methods, Kiev, September 2–6, 1997), Vol 3237. The International Society for Optical Engineering, Bellingham, pp 113–122

    Google Scholar 

  • Semenov AI, Shefov NN (1999) Empirical model of hydroxyl emission variations. Int J Geomagn Aeronomy 1:229–242

    Google Scholar 

  • Semenov AI, Shefov NN (2003) New knowledge of variations in the hydroxyl, sodium and atomic oxygen oxygen emissions. Geomagn Aeronomy 43:786–791

    Google Scholar 

  • Semenov AI, Sukhodoev VA, Shefov NN (2002a) A model of the vertical vertical temperature temperature distribution in the atmosphere altitudes of 80–100 km that taking into account the solar solar activity activity and the long-term trend trend. Geomagn Aeronomy 42:239–244

    Google Scholar 

  • Semenov AI, Bakanas VV, Perminov VI, Zheleznov YuA, Khomich. VYu (2002b) The near infrared spectrum spectrum of the emission of the nighttime upper atmosphere of the Earth Earth. Geomagn Aeronomy 42:390–397

    Google Scholar 

  • Semenov AI, Shefov NN, Lysenko EV, Givishvili GV, Tikhonov AV (2002c) The seasonal peculiarities of behavior of the long-term temperature temperature trends in the middle atmosphere middle atmosphere at the mid-latitudes. Phys Chem Earth Earth 27:529–534

    Google Scholar 

  • Semenov AI, Shefov NN, Perminov VI, Khomich VYu, Fadel KhM (2005) Temperature response of the middle atmosphere middle atmosphere on the solar solar activity activity for different seasons. Geomagn Aeronomy 45:236–240

    Google Scholar 

  • She CY, Songsheng Chen, Zhilin Hu, Sherman J, Vance LD, Vasoli V, White MA, Yu JR, Kryeger DA (2000) Eight-year climatology of nocturnal temperature temperature and sodium density density in the mesopause region (80 to 105 km) over Fort Collins, CO (41° N, 105°W). Geophys Res Lett 27:3289–3292

    Google Scholar 

  • Shefov NN (1962) Sur l’émission de l’helium dans la haute atmosphere. Ann Géophys 18:125

    Google Scholar 

  • Shefov NN (1978) Altitude of the hydroxyl emission layer emission layer. In: Krassovsky VI (ed) Aurorae and Airglow, N 27. Soviet Radio, Moscow, pp 45–51

    Google Scholar 

  • Shefov NN, Semenov AI (2004) Longitudinal-temporal distribution of the occurrence frequency of noctilucent clouds noctilucent clouds. Geomagn Aeronomy 44:259–262

    Google Scholar 

  • Shefov NN, Semenov AI (2006) Spectral composition of the cyclic aperiodic (quasi-biennial) variations in solar solar activity activity and the Earth’s atmosphere. Geomagn Aeronomy 46:411–416

    Google Scholar 

  • Shklovsky IS (1951) The solar solar corona. Gostekhizdat, Moscow

    Google Scholar 

  • Simonov GV (1963) Geomagnetic time. Geophys J Roy Astron Soc 8:258–267

    Google Scholar 

  • Solanki SK, Fligge M (2002) Solar irradiance variations and climate. J Atmos Solar-Terr Phys 64:677–686

    Google Scholar 

  • Soloviev MD (1969) Mathematical cartography. Nedra, Moscow

    Google Scholar 

  • Soloviev AA, Kirichek EA (2004) The diffusive theory of the solar solar magnetic cycle. Kalmyk State University Publishing House, Elista, S. Peterburg

    Google Scholar 

  • Slater LJ (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith FL, Smith C (1972) Numerical evaluation of Chapman’s grazing incidence integral ch(X, χ). J Geophys Res 77:3592–3597

    Google Scholar 

  • Starkov GV (1994) Mathematical model of auroral boundaries. Geomagn Aeronomy 34:331–336

    Google Scholar 

  • Starkov GV (2000) Planetary dynamics of auroral luminosity. In: Ivanov VE (ed) Physics of the near-Earth Earth space. Polar Geophysical Institute, Kola Scientific Centre RAS, Apatity, pp 409–499

    Google Scholar 

  • Starkov GV, Shefov NN (2001) Long-term changes of the auroral heights in dayside of the auroral oval. Geomagn Aeronomy 41:763–765

    Google Scholar 

  • Starkov GV, Yevlashin LS, Semenov AI, Shefov NN (2000) A subsidence of the thermosphere thermosphere during 20th century according to the measurements of the auroral heights. Phys Chem Earth Earth Pt B 25:547–550

    Google Scholar 

  • Stewart JQ, Eggleston FC (1940) The mathematical characteristics of sunspot variations. II. Astrophys J 91:72–84

    Google Scholar 

  • Stewart JQ, Panofsky HAA (1938) The mathematical characteristics of sunspot variations. Astrophys J 88:385–407

    Google Scholar 

  • Stolarski RS, Green AES (1967) Calculations of auroral intensities from electron impact. J Geophys Res 72:3967–3974

    Google Scholar 

  • Störmer C (1955) The polar aurora. Clarendon Press, Oxford

    Google Scholar 

  • Straižys V (1977) Multicolor stellar photometry photometry. Mokslas, Vilnius

    Google Scholar 

  • Sukhanova SA (1996) Propagation of the stationary planetary waves planetary waves in the mesosphere and lower thermosphere thermosphere altitudes. Izvestiya Atmos Oceanic Phys 32:61–68

    Google Scholar 

  • Svalgaard L (1977) Solar wind wind and interplanetary medium. In: Bruzek A, Durrant CJ (eds) Illustrated glossary for solar solar and solar solar-terrestrial physics. D Reidel Publ Co, Dordrecht, Holland, pp 147–158

    Google Scholar 

  • Sverdlov YuL (1982) The radio aurorae morphology. Nauka, Leningrad

    Google Scholar 

  • Sverdlov YuL, Khorkova TN (1982) Coordinates of the corrected geomagnetic geomagnetic pole. In: Isaev SI, Starkov GV (eds) Aurorae, N 30. VINITI, Moscow, pp 98–103

    Google Scholar 

  • Sytinskaya NN (1959) Moon Moon nature. Fizmatgiz, Moscow

    Google Scholar 

  • Tennyson PD, Henry RC, Feldman PD, Hartig GF (1988) Cosmic ultraviolet background radiation and Zodiacal Light Zodiacal Light. Astrophys J 330:435–444

    Google Scholar 

  • Timothy JG (1977) Solar spectrum spectrum between 300 and 1200 A. In: White OR (ed) The solar solar output and its variation. University Press, Boulder, pp 257–285

    Google Scholar 

  • Tohmatsu T, Ogawa T, Tsuruta H (1965) Photoelectronic processes in the upper atmosphere. I. Energy spectrum spectrum of primary photoelectrons. Rept Ionosph. Space Res Japan 19:482–508

    Google Scholar 

  • Toroshelidze TI (1968) A vertical vertical distribution of the atmospheric sodium. Bull Georgian SSR Acad Sci 51:579–584

    Google Scholar 

  • Toroshelidze TI (1970) A study of atmospheric sodium in twilight. Indian Meteorol Geophys 21:211–218

    Google Scholar 

  • Toroshelidze TI (1972) On the problem of the effective screen height at twilight method of the terrestrial atmosphere study. In: Kharadze EK (ed) Bull Abastumani astrophys observ, N 41. pp 105–113

    Google Scholar 

  • Toroshelidze TI (1991) The analysis of the aeronomy problems on the upper atmosphere glow. Shefov NN (ed) Metsniereba, Tbilisi

    Google Scholar 

  • Torr MR, Torr DG, Stengel R (1979) Zodiacal Light Zodiacal Light surface brightness measurements by Atmosphere Explorer-C. Icarus 40:49–59

    Google Scholar 

  • Truttse YuL (1973) Upper atmosphere during geomagnetic geomagnetic disturbances. In: Krassovsky VI (ed) Aurorae and Airglow, N 20. Nauka, Moscow, pp 5–22

    Google Scholar 

  • Uspensky MV, Starkov GV (1987) The auroras and the radiowave scattering. Nauka, Leningrad

    Google Scholar 

  • Vadzinsky RN (2001) A handbook on the probability distributions. Nauka, S. Peterburg

    Google Scholar 

  • Valchuk TE, Feldstein YaI (1983) Correlational and regressional relations between the geomagnetic geomagnetic activity activity index aa and the characteristics of the terrestrial cosmic space. In: Levitin AE (ed) Solar wind wind, magnetosphere magnetosphere and geomagnetic geomagnetic field. Nauka, Moscow, pp 127–145

    Google Scholar 

  • Vallance Jones A (1974) Aurora. D Reidel Publ Co, Dordrecht

    Google Scholar 

  • Vassy AT, Vassy E (1976) La luminescence nocturne. In: Rawer K (ed) Handbuch der Physik. Geophysik 111/5, Vol 49/5. Springer-Verlag, Berlin, pp 5–116

    Google Scholar 

  • Vergasova GV, Kazimirovsky ES (1994) Macroscale variations of prevailing wind wind in the lower thermosphere thermosphere. Izvestiya Atmos Oceanic Phys 30:31–38

    Google Scholar 

  • Vernova ES, Tyasto MI, Baranov DG, Grigoryan MS (1997) Amplitude pattern of the 27-day cosmic-ray variation in the course of the solar solar cycle. Geomagn Aeronomy 37:234–236

    Google Scholar 

  • Vitinsky YuI (1963) Solar activity activity forecasts. USSR Acad Sci Publ House, Moscow, Leningrad

    Google Scholar 

  • Vitinsky YuI (1973) Cyclicity and solar solar activity activity forecasts. Nauka, Leningrad

    Google Scholar 

  • Vitinsky YuI, Kopecký M, Kuklin GV (1986) Statistics of the sunspot activity activity of the Sun Sun. Nauka, Moscow

    Google Scholar 

  • Waldmeier M (1941) Ergebnisse und Probleme der Sonnenforschung. Zürich

    Google Scholar 

  • Waldmeier M (1955) Ergebnisse und Probleme der Sonnenforschung. 2 Auflage. Leipzig

    Google Scholar 

  • Wattson R, Danielson R (1965) The infrared spectrum spectrum of the Moon Moon. Astrophys J 142:16–22

    Google Scholar 

  • WinEphem (2002). http://www.geocities.com/tmarkjames/WinEphem.html 2002

    Google Scholar 

  • Whittaker ET, Watson GN (1927) A course of modern analysis, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Woeikof A (1891) Cold and warm winter interchange. Meteorol Rep 9:409–422

    Google Scholar 

  • Woeikof A (1895) Die Schneedecke in “paaren” und “unpaaren” Wintern. Meteorol Zeits 12:77–78

    Google Scholar 

  • Yanovsky BM (1953) Terrestrial magnetism, 2nd edn. Gostekhizdat, Moscow

    Google Scholar 

  • Yevlashin LS (2000) Hydrogen emission in auroras and the precipitation of auroral protons. In: Ivanov VE (ed) Physics of the near-earth space. Polar Geophysical Institute, Kola Scientific Centre RAN, Apatity, pp 500–548, 633–665

    Google Scholar 

  • Yevlashin LS (2005) Aperiodic variations of the observation frequency of the red type-A auroras during 11-year cycle of solar solar activity activity. Geomagn Aeronomy 45:388–391

    Google Scholar 

  • Young JM, Carruthers GR, Holmes JC, Johnson CJ, Patterson NP (1968) Detection of Lyman-beta and helium resonance radiation in the night sky night sky. Science 160:990–991

    Google Scholar 

  • Zaitseva SA, Akhremtchik SN, Pudovkin MI, Galtsova YaV, Besser BP, Rijnbeek RP (2003) Long-term variations of the solar solar activity activity-lower atmosphere relationship. Int J Geomagn Aeronomy 4:167–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khomich, V.Y., Semenov, A.I., Shefov, N.N. (2008). The Radiating Atmosphere and Space. In: Airglow as an Indicator of Upper Atmospheric Structure and Dynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75833-4_1

Download citation

Publish with us

Policies and ethics