Skip to main content

Snow Cover Duration in Relation to Topography in the Loetschental, Switzerland

  • Conference paper
  • First Online:
Landform - Structure, Evolution, Process Control

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 115))

Abstract

In high mountain environments the spatial distribution of seasonal snow cover depends decisively on topography. Yearly repeated snow cover patterns during snow melt clearly indicate the impact of topography and influence significantly ecological and geomorphological patterns, as well as hydrological and climatic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschenwald, J., K. Leichter, E. Tasser & U. Tappeiner (2001): Spatio-temporal landscape analysis in mountainous terrain by means of small format photography: a methodological approach. IEEE Transactions on Geoscience and Remote Sensing, 39, S. 885–893.

    Article  Google Scholar 

  • Bahrenberg, G., E. Giese & J. Nipper (2003): Statistische Methoden in der Geographie 2. Multivariate Statistik. Stuttgart. B.G. Teubner, 415 S.

    Google Scholar 

  • Barry, R. G. (1992): Mountain weather and climate. London. Routledge, 313 S.

    Google Scholar 

  • Bernhard, L. & R. Weibel (1999): Modelling snowmelt using a digital terrain model and GIS-based techniques, In: R. Dikau & H. Saurer, [Eds.]: GIS for earth surface systems: analysis and modelling of the natural environment. Stuttgart, S. 25–47.

    Google Scholar 

  • Blöschl, G. & R. Kirnbauer (1991): Point snowmelt models with different degrees of complexity – internal processes. Journal of Hydrology, 129, S. 127–147.

    Article  Google Scholar 

  • Blöschl, G. & R. Kirnbauer (1992): An analysis of snow cover patterns in a small alpine catchment. Hydrological Processes, 6, S. 99–109.

    Google Scholar 

  • Blöschl, G., R. Kirnbauer & D. Gutknecht (1991): A spatially distributed snowmelt model for application in alpine terrain, In: H. Bergmann, H. Lang, W. Frey, D. Issler & B. Salm, [Eds.]: Snow, hydrology and forests in high alpine areas (Proceedings of the Vienna Symposium). IAHS 205, S. 51–60.

    Google Scholar 

  • Brugger, S. (2004): Lawinen schaffen Lebensraum. Größere Artenvielfalt in Lawinenzügen. Die Alpen, 1, S. 29–31.

    Google Scholar 

  • Chang, K.-T. & Z. LI (2000): Modelling snow accumulation with a geographic information system. International Journal of Geographical Information Science, 14, S. 693–707.

    Article  Google Scholar 

  • Corripio, J. (2004): Snow surface albedo estimation using terrestrial photography. International Journal of Remote Sensing, 25, S. 5705–5729.

    Article  Google Scholar 

  • Corripio, J. G. (2003): Modelling the energy balance of high altitude glacierised basins in the Central Andes. PhD-Thesis, University Edinburgh. 151. Unpublished.

    Google Scholar 

  • De Jong, C., P. Ergenzinger, M. Borufka, A. Köcher & M. Dresen (2005): Geomorphological Zoning: An improvement to coupling alpine hydrology and meteorology?, In: C. De Jong, D. Collins & R. Ranzi, [Eds.]: Climate and hydrology in mountain areas. London, S. 247–260.

    Google Scholar 

  • Goodison, B. E., H. L. Ferguson & G. A. Kay (1981): Measurement and data analysis, In: D. M. Gray & D. H. Male, [Eds.]: Handbook of snow. Principles, Processes, Management & Use., S. 194–274.

    Google Scholar 

  • Hall, D. K. & J. Martinec (1985): Remote sensing of ice and snow. London, 189 S.

    Google Scholar 

  • Hinkler, J., S. B. Pedersen, M. Rasch & B. U. Hansen (2002): Automatic snow cover monitoring at high temporal and spatial resolution, using images taken by a standard digital camera. International Journal of Remote Sensing, 23, S. 4669–4682.

    Article  Google Scholar 

  • Holtmeier, F.-K. & G. Broll (1992): The influence of tree islands and microtopography on pedoecological conditions in the Forest-Alpine Tundra Ecotone on Niwot Ridge, Colorado Front Range, U.S.A. Arctic and Alpine Research, 24, S. 216–228.

    Article  Google Scholar 

  • Hörsch, B. (2003): Zusammenhang zwischen Vegetation und Relief in alpinen Einzugsgebieten des Wallis (Schweiz). Ein multiskaliger GIS- und Fernerkundungsansatz. Bonner Geographische Abhandlungen, 110, Bonn, S. 256 S.

    Google Scholar 

  • Kölbel, H. (1984): Die Schnee-Ausaperung im Gurgler Tal (Ötztal/Tirol): Salzburger Geographische Arbeiten, 12. Salzburg, 214 S.

    Google Scholar 

  • König, M. & M. Sturm (1998): Mapping snow distribution in the Alaskan Arctic using aerial photography and topographic relationships. Water Resources Research,34, S. 3471–3483.

    Article  Google Scholar 

  • Löffler, J. (2005): Snow cover dynamics, soil moisture variability and vegetation ecology in high mountain catchments of central Norway. Hydrological Processes, 19, S. 2385–2405.

    Google Scholar 

  • Luce, C. H., D. G. Tarboton & K. R. Cooley (1999): Subgrid parameterization of snow distribution for an energy and mass balance snow cover mode. Hydrological Processes,13, S. 1921–1933.

    Article  Google Scholar 

  • Maggioni, M., U. Gruber & A. Stoffel (2005): Definition and characterisation of potential avalanche release areas. http://gis.esri.con/library/userconf/proc02/pa1161/p11(Letzter Aufruf: 05.08.2006).

  • Marsh, P. (1999): Snowcover formation and melt: recent advances and future prospects. Hydrological Processes,13, S. 2117–2134.

    Google Scholar 

  • McKay, G.A. & D.M. Gray (1981): The distribution of snowcover. In: D.M. Gray & D.H. Male (Eds.): Handbook of snow. Principles, Processes, Management & Use, 153–190.

    Google Scholar 

  • Phillips, M. (2000): Influence of snow supporting structures on the thermal regime of the ground in alpine permafrost terrain: Eidgenössisches Institut für Schnee- und Lawinenforschung. Davos, 146 S.

    Google Scholar 

  • Rychetnik, J. (1984): Methoden der Erfassung und Auswertung der Ausaperung und Lawinenaktivität an einem Lawinenhang, In: H. M. Brechtel, [Ed.]: Snow hydrologic research in Central Europe, 162, IAHS, S. 153–165.

    Google Scholar 

  • Schmidt, S. (2007): Die Reliefabhängige Schneedeckenverteilung im Hochgebirge – ein multiskaliger Methodenverbund am Beispiel des Lötschentals (Schweiz). Dissertation. Universität Bonn. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2007/schmidt_susanne, 187 S.

  • Schmidt, S. & B. Weber (2008): The dilemma of resolution and seasonality of snow cover in alpine environments, In: U. Strasser, [Ed.]: Research report: Alpine snow workshop: National park research report, S. 103–110.

    Google Scholar 

  • Seidel, K. & J. Martinec (2004): Remote sensing in snow hydrology- runoff modelling, effect of climate change. Heidelberg, 150 S.

    Google Scholar 

  • Stähli, M. & P.-E. Jansson (1998): Test of two SVAT snow submodels during different winter conditions. Agricultural and Forest Meteorology 92, S. 29–41.

    Article  Google Scholar 

  • SWISSTOPO (2004): DHM 25 Das digitale Höhenmodell der Schweiz, Zürich.

    Google Scholar 

  • Tappeiner, U., G. Tappeiner, J. Aschenwald, E. Tasser & B. Ostendorf (2001): GIS-based modelling of spatial pattern of snow cover duration in an alpine area. Ecological Modelling, 138, S. 265–275.

    Article  Google Scholar 

  • Winiger, M., M. Gumpert & H. Yamout (2005): Karakorum – Hindukush-western Himalaya: assessing high-altitude water resources. Hydrological Processes, 19, S. 2329–2338.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by a PhD fellowship of the German Research Group (Deutsche Forschungsgemeinschaft DFG). My special thanks goes to Bernhard Weber, who developed the semi-empirical process to orthorectify the images and who always supported me in the photogrammetic methods. Furthermore, I would like to thank Matthias Winiger, Richard Dikau and Carmen de Jong for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, S. (2009). Snow Cover Duration in Relation to Topography in the Loetschental, Switzerland. In: Otto, JC., Dikau, R. (eds) Landform - Structure, Evolution, Process Control. Lecture Notes in Earth Sciences, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75761-0_10

Download citation

Publish with us

Policies and ethics