Skip to main content

Stability and Instability Issues for Relaxation Shock Profiles

  • Conference paper
Hyperbolic Problems: Theory, Numerics, Applications

A hyperbolic system with relaxation is a system of partial differential equations of hyperbolic type with a zero-order term, describing the relaxation mechanism toward a given equilibrium. After hyperbolic rescaling, the system can be thought as a dynamical system with two time scales: the fast one is governed mainly by the kinetic part of the system itself and it drives the solution toward the equilibrium manifold, the slow one is described by a reduced hyperbolic system of conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchini, S.: Hyperbolic limit of the Jin-Xin relaxation model, Comm. Pure Appl. Math. 59 (2006), no. 5, 688–753.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianchini, S.; Hanouzet, B.; Natalini, R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., to appear.

    Google Scholar 

  3. Broadwell, J.E.: Shock structure in a simple discrete velocity gas, Physics Fluids 7 (1964), no. 8, 1243–1247.

    Article  MATH  Google Scholar 

  4. Caflisch, R.E.; Liu, T.-P.: Stability of shock waves for the Broadwell equations. Comm. Math. Phys. 114 (1988), no. 1, 103–130.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G.Q.; Levermore, C.D.; Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787–830.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chern, I.-L.: Long-time effect of relaxation for hyperbolic conservation laws, Comm. Math. Phys. 172 (1995), no. 1, 39–55.

    Article  MathSciNet  MATH  Google Scholar 

  7. Freistühler, H.; Serre, D.: L 1 stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51 (1998), no. 3, 291–301.

    Article  MathSciNet  MATH  Google Scholar 

  8. Godillon, P.: Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation, Phys. D 148 (2001), no. 3–4, 289–316.

    Article  MathSciNet  Google Scholar 

  9. Godillon, P.; Lorin, E.: A Lax shock profile satisfying a sufficient condition of spectral instability, J. Math. Anal. Appl. 283 (2003), no. 1, 12–24.

    Article  MathSciNet  MATH  Google Scholar 

  10. Humpherys, J.: Stability of Jin-Xin relaxation shocks, Quart. Appl. Math. 61 (2003), no. 2, 251–263.

    MathSciNet  MATH  Google Scholar 

  11. Jin, S.; Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), no. 3, 235–276.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawashima, S.; Matsumura, A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Comm. Math. Phys. 101 (1985), no. 1, 97–127.

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, H.: Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws, J. Differential Equations 192 (2003), no. 2, 285–307.

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, H.; Woo, C.-W.; Yang, T.: Decay rate for travelling waves of a relaxation model, J. Differential Equations 134 (1997), no. 2, 343–367.

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, H.; Wang, J.; Yang, T.: Stability of a relaxation model with a nonconvex flux, SIAM J. Math. Anal. 29 (1998), no. 1, 18–29

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Comm. Math. Phys. 108 (1987), no. 1, 153–175.

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, T.-P.; Zeng, Y.: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc. 125 (1997), no. 599.

    Google Scholar 

  18. Luo, T.; Serre, D.: Linear stability of shock profiles for a rate-type viscoelastic system with relaxation, Quart. Appl. Math. 56 (1998), no. 3, 569–586.

    MathSciNet  MATH  Google Scholar 

  19. Lyng, G.; Texier, B.; Raoofi M.; Zumbrun K.: Pointwise Green function bounds and stability of traveling waves for Majda’s model of reacting flow, in preparation.

    Google Scholar 

  20. Mascia, C.; Natalini, R.: L 1 nonlinear stability of traveling waves for a hyperbolic system with relaxation, J. Differential Equations 132 (1996), no. 2, 275–292.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mascia, C.; Zumbrun, K.: Pointwise Green’s function bounds and stability of relaxation shocks, Indiana Univ. Math. J. 51 (2002), no. 4, 773–904.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mascia, C.; Zumbrun, K.: Stability of large-amplitude shock profiles of general relaxation systems, SIAM J. Math. Anal. 37 (2005), no. 3, 889–913

    Article  MathSciNet  MATH  Google Scholar 

  23. Mascia, C.; Zumbrun, K.: Spectral stability of weak relaxation shock profiles, in preparation.

    Google Scholar 

  24. Pego, R.L.; Warchall, H.A.: Spectrally stable encapsulated vortices for nonlinear Schrödinger equations, J. Nonlinear Sci. 12 (2002), no. 4, 347–394.

    Article  MathSciNet  MATH  Google Scholar 

  25. Plaza, R.; Zumbrun, K.: An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin. Dyn. Syst. 10 (2004), no. 4, 885–924.

    Article  MathSciNet  MATH  Google Scholar 

  26. Serre, D.: L 1-stability of nonlinear waves in scalar conservation laws. In: Evolutionary equations. Vol. I, 473–553, Handb. Differ. Equ., North-Holland, Amsterdam, 2004.

    Google Scholar 

  27. Serre, D.: Relaxations semi-linéaire et cinétique des systemes de lois de conservation, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 2, 169–192.

    Article  MathSciNet  MATH  Google Scholar 

  28. Whitham, J.: Linear and nonlinear waves. New York: Wiley, 1974.

    MATH  Google Scholar 

  29. Yong, W.-A.; Zumbrun, K.: Existence of relaxation shock profiles for hyperbolic conservation laws, SIAM J. Appl. Math. 60 (2000), no. 5, 1565–1575.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation, Arch. Ration. Mech. Anal. 150 (1999), no. 3, 225–279.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zumbrun, K.; Howard, P.: Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J. 47 (1998), no. 3, 741–871.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mascia, C. (2008). Stability and Instability Issues for Relaxation Shock Profiles. In: Benzoni-Gavage, S., Serre, D. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75712-2_14

Download citation

Publish with us

Policies and ethics