Skip to main content

Abstract

An important problem in image and signal analysis is denoising. Given data y j at locations x j , j = 1, ..., N, in space or time, the goal is to recover the original image or signal m j , j = 1, ..., N, from the noisy observations y j , j = 1, ..., N. Denoising is a special case of a function estimation problem: If m j = m(x j ) for some function m(x), we may model the data y j as real-valued random variables Y j satisfying the regression relation

$$ Y_j = m\left( {x_j } \right) + \varepsilon _j , j = 1,...,N, $$
(6.1)

where the additive noise ε j , j = 1, ..., N, is independent, identically distributed (i.i.d.) with mean \( \mathbb{E} \) εj = 0. The original denoising problem is solved by finding an estimate \( \hat m\left( x \right) \) of the regression function m(x) on some subset containing all the x j . More generally, we may allow the function arguments to be random variables X j ε ℝd themselves ending up with a regression model with stochastic design

$$ Y_j = m\left( {X_j } \right) + \varepsilon _j , j = 1,...,N, $$
(6.2)

where X j ,Y j are identically distributed, and \( \mathbb{E}\left\{ {\varepsilon _j |X_j } \right\} = 0 \) . In this case, the function m(x) to be estimated is the conditional expectation of Y j given X j = x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bollerslev. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31:301–327, 1986.

    Article  MathSciNet  Google Scholar 

  2. M. Brockmann, Th. Gasser, and E. Herrmann. Local adaptive bandwidth choice for kernel regression estimates. Journal of the American Statistical Association, 88:1302–1309, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Brox, M. Welk, G. Steidl, and J. Weickert. Equivalence results for TV diffusion and TV regularisation. In L. D. Griffin and M. Lillholm, editors, Scale-Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, pages 86–100. Springer, Berlin-Heidelberg-New York, 2003.

    Google Scholar 

  4. Z. Cai, J. Fan, and R. Li. Efficient estimation and inference for varying coefficients models. Journal of the American Statistical Association, 95:888–902, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  5. Z. Cai, J. Fan, and Q. Yao. Functional-coefficient regression models for nonlinear time series. Journal of the American Statistical Association, 95:941–956, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. J. Carroll, D. Ruppert, and A.H. Welsh. Nonparametric estimation via local estimating equation. Journal of the American Statistical Association, 93:214–227, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging. In Image Processing, 1994. Proceedings of ICIP-94, vol. 2, IEEE InternationalConference, volume 2, pages 168–172, 1994. ISBN 0-8186-6950-0

    Article  Google Scholar 

  8. X. Chen and H. White. Nonparametric learning with feedback. Journal of Econometric Theory, 82:190–222, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. K. Chu, I. K. Glad, F. Godtliebsen, and J. S. Marron. Edge-preserving smoothers for image processing. Journalof the American StatisticalAssociation, 93(442):526–541, 1998.

    MATH  MathSciNet  Google Scholar 

  10. R. Dahlhaus. Fitting time series models to nonstationary processes. Annals of Statistics, 16:1–37, 1997.

    MathSciNet  Google Scholar 

  11. R. Dahlhaus and S. Subba Rao. Statisticalinference of time varying arch processes. Annals of Statistics, 34:1074–1114, 2006.

    Google Scholar 

  12. R. Dahlhaus and S. Subba Rao. A recursive onlilne algorithm for the estimation of time varying arch processes. Bernoulli, 13:389–422, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Didas, J. Franke, J. Tadjuidje, and J. Weickert. Some asymptotics for localleast-squares regression with regularization. Report in Wirtschaftsmathematik 107, University of Kaiserslautern, 2007.

    Google Scholar 

  14. S. Didas, P. Mrázek, and J. Weickert. Energy-based image simplification with nonlocaldata and smoothness terms. In Algorithms for Approximation — Proceedings of the 5th InternationalConference, Chester, pages 51–60, Springer, Berlin, Heidelberg, New York, 2007.

    Google Scholar 

  15. S. Didas and J. Weickert. Integrodifferentialequations for continuous multiscale wavelet shrinkage. Inverse Problems and Imaging, 1:29–46, 2007.

    MathSciNet  Google Scholar 

  16. H. Drees and C. Starica. A simple non-stationary modelfor stock returns, 2003. Preprint.

    Google Scholar 

  17. R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of the united kingdom inflation. Econometrica, 50:987–1006, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Fan, M. Farmen, and I. Gijbels. Local maximum likelihood estimation and inference. Journal of the Royal Statistical Society, 60:591–608, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chapman & Hall, London, 1996.

    Google Scholar 

  20. Y. Feng. Modelling different volatility components in high-frequency financial returns, 2002. Preprint.

    Google Scholar 

  21. J. Franke and S. Halim. A bootstrap test for comparing images in surface inspection. Preprint 150, dfg-spp 1114, University of Bremen, 2006.

    Google Scholar 

  22. J. Franke and S. Halim. Data-adaptive bandwidth selection for kernel estimates of two-dimensional regression functions with correlated errors. Report in Wirtschaftsmathematik, University of Kaiserslautern, 2007.

    Google Scholar 

  23. J. Franke and S. Halim. Wild bootstrap tests for signals and images, IEEE Signal Processing Magazine, 24(4):31–37, 2007.

    Article  Google Scholar 

  24. P. Fryzlewicz, T. Sapatinas, and S. Subba Rao. Normalised least-squares estimation in time-varying arch models, 2007. To appear in: Annals of Statistics

    Google Scholar 

  25. Th. Gasser and H. G. Müller. Kernel estimation of regression functions. In Th. Gasser and M. Rosenblatt, editors, Smoothing Techniques for Curve Estimation, Springer, Berlin, Heidelberg, New York, 1979.

    Google Scholar 

  26. L. Giraitis, P. Kokoskza, and R. Leipus. Stationary arch models: Dependence structure and central limit theorem. Econometric Theory, 16:3–22, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Giraitis, R. Leipus, and D. Surgailis. Recent advances in arch modelling. In A. Kirman and G. Teyssiere, editors, Long memory in Economics, pages 3–39, Springer, Berlin, Heidelberg, New York, 2005.

    Google Scholar 

  28. W. Haerdle. Applied Nonparametric Regression. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  29. S. Halim. Spatially adaptive detection of local disturbances in time series and stochastic processes on the integer lattice Z2. PhD thesis, University of Kaiserlautern, 2005.

    Google Scholar 

  30. T. J. Hastie and R.J. Tibshirani. Varying-coefficient models (with discussion). Journal of the Royal Statistical Society, 55:757–796, 1993.

    MATH  MathSciNet  Google Scholar 

  31. E. Herrmann, Th. Gasser, and A. Kneip. Choice of bandwidth for kernel regression when residuals are correlated. Biometrika, 79:783–795, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. J. Koenderink and A. L. Van Doom. The structure of locally order-less images. International Journal of Computer Vision, 31(2/3):159–168, 1999.

    Article  Google Scholar 

  33. H. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applications. Springer, Berlin, Heidelberg, New York, 2003.

    Google Scholar 

  34. L. Ljung and T. Söderstrom. Theory and Practice of Recursive Identification. MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  35. C. Loader. Local regression and likelihood. Springer, Berlin, Heidelberg, New York, 1999.

    Google Scholar 

  36. T. Mikosch and C. Starica. Is it really long memory we see in financial returns? In P. Embrechts, editor, Extremes and Integrated Risk Management, pages 149–168, Risk Books, London, 2000.

    Google Scholar 

  37. E. Moulines, P. Priouret, and F. Roueff. On recursive estimation for locally stationary time varying autoregressive processes. Annals of Statistics, 33:2610–2654, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  38. P. Mrázek and J. Weickert. Rotationally invariant wavelet shrinkage. In Pattern Recognition, volume 2781 of Lecture Notes in Computer Science, pages 156–163. Springer, Berlin-Heidelberg, New York, 2003.

    Google Scholar 

  39. P. Mrázek, J. Weickert, and A. Bruhn. robust estimation and smoothing with spatial and tonal kernels. In R. Klette, R. Kozera, L. Noakes, and J. Weickert, editors, Geometric Properties for Incomplete Data, volume 31 of Computational Imaging and Vision, pages 335–352. Springer, Berlin-Heidelberg, New York, 2006.

    Google Scholar 

  40. P. Mrázek, J. Weickert, and G. Steidl. Correspondences between wavelet shrinkage and nonlinear diffusion. In Scale-Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, pages 101–116. Springer, Berlin-Heidelberg, New York, 2003.

    Google Scholar 

  41. P. Mrázek, J. Weickert, and G. Steidl. Diffusion-inspired shrinkage functions and stability results for wavelet shrinkage. International Journal of Computer Vision, 64(2(3)):171–186, 2005.

    Article  Google Scholar 

  42. P. Mrázek, J. Weickert, and G. Steidl. On iterations and scales of non-linear filters. In O. Drbohlav, editor, Proceedings of the Eighth Computer Vision Winter Workshop, pages 61–66, February 2003. Valtice, Czech Republic,. Czech Pattern Recognition Society.

    Google Scholar 

  43. H. Müller. Change-points in nonparametric regression analysis. Annals of Statistics, 20:737–761, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Mumford and J. Shah. Optimal approximation of piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42:577–685, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  45. D. Nelson. Conditional heteroskedasity in assit returns: A new approach. Econometrica, 59:347–370, 1990.

    Article  Google Scholar 

  46. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:629–639, 1990.

    Article  Google Scholar 

  47. L. Pizarro, S. Didas, F. Bauer, and J. Weickert. Evaluating a general class of filters for image denoising. In B. K. Ersboll and K. S. Pedersen, editors, Image Analysis, volume 4522 of Lecture Notes in Computer Science, pages 601–610, Springer, Berlin, Heidelberg, New York, 2007.

    Google Scholar 

  48. G. Plonka and G. Steidl. A multiscale wavelet-inspired scheme for non-linear diffusion. International Journal of Wavelets, Multiresolution and Information Processing, 4:1–21, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. Polzehl and V. Spokoiny. Adaptive weights smoothing with applications to image restorations. Journal of the Royal Statistical Society Ser. B, 62:335–354, 2000.

    Article  MathSciNet  Google Scholar 

  50. J. Polzehl and V. Spokoiny. Functional and dynamic magnetic resonance imaging using vector adaptive weights smoothing. Journal of the Royal Statistical Society Ser. C, 50:485–501, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. Polzehl and V. Spokoiny. Image denoising: pointwise adaptive approach. Annals of Statistics, 31:30–57, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Polzehl and V. Spokoiny. Spatially adaptive regression estimation: Propagation-separation approach. Technical report, WIAS, Berlin, 2004. Preprint 998.

    Google Scholar 

  53. J. Polzehl and V. Spokoiny. Propagation-separation approach for local likelihood estimation. Theory and Related Fields, 135:335–336, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  54. J. Polzehl and K. Tabelow. Adaptive smoothing of digital images: the r package adimpro. Journal of Statistical Software, 19(1), 2007.

    Google Scholar 

  55. J. Polzehl and K. Tabelow. fmri: A package for analyzing fmri data, 2007. To appear in: R News.

    Google Scholar 

  56. P. Qiu. Discontinuous regression surface fitting. Annals of Statistics, 26:2218–2245, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  57. r. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0 2005.

    Google Scholar 

  58. P. Robinson. Nonparametric estimation of time-varying parameters. In P. Hackl, editor, Statistical analysis and Forecasting of Economic Structural Change, pages 253–264. Springer, Berlin, Heidelberg, New York, 1989.

    Google Scholar 

  59. P. Robinson. Testing for strong serial correlation and dynamic conditional heteroskedasity in multiple regression. Journal of Econometrics, 47:67–78, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  60. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Article  MATH  Google Scholar 

  61. J. Simonoff. Smoothing Methods in Statistics. Springer, Berlin, Heidelberg, New York, 1996.

    Google Scholar 

  62. S. M. Smith and J. M. Brady. SUSAN — A new approach to low lewel image processing. International Journal of Computer Vision, 23(l):43–78, 1997.

    Google Scholar 

  63. V. Solo. The second order properties of a time series recursion. Annals of Statistics, 9:307–317, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  64. V. Spokoiny. Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Annals of Statistics, 26:1356–1378, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  65. G. Steidl and J. Weickert. Relations between soft wavelet shrinkage and total variation denoising. Lecture Notes in Computer Science, 2449:198–205, 2002.

    Article  Google Scholar 

  66. G. Steidl, J. Weickert, T. Brox, P. Mrázek, and M. Welk. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis, 42(2):686–713, May 2004.

    Article  MATH  MathSciNet  Google Scholar 

  67. K. Tabelow, J. Polzehl, V. Spokoiny, and H. U. Voss. Diffusion tensor imaging: Structural adaptive smoothing. Technical report, WIAS, Berlin, 2007. Preprint 1232.

    Google Scholar 

  68. K. Tabelow, J. Polzehl, H. U. Voss, and V. Spokoiny. Analyzing fMRI experiments with structural adaptive smoothing procedures. Neuroimage, 33:55–62, 2006.

    Article  Google Scholar 

  69. R. Tibshirani and T.J. Hastie. Local likelihood estimation. Journal of the American Statistical Association, 82:559–567, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  70. A. Tikhonov. Solution of incorrectly formulated problems and the regularization method. In Soviet Mathematics Doklady, volume 4, pages 1035–1038, 1963.

    Google Scholar 

  71. C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV’ 98: Proceedings of the Sixth International Conference on Computer Vision, pages 839–846, Washington, DC, USA, 1998. IEEE Computer Society.

    Google Scholar 

  72. H. U. Voss, K. Tabelow, J. Polzehl, O. Tchernichovsky, K. K. Maul, D. Salgado-Commissariat, D. Ballon, and S. A. Helekar. Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography. PNAS, 104:10667–10672, 2007.

    Article  Google Scholar 

  73. M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman & Hall, London, 1995.

    Google Scholar 

  74. J. Weickert, G. Steidl, P. Mrazek, M. Welk, and T. Brox. Diffusion filters and wavelets: What can they learn from each other? In Handbook of Mathematical Models of Computer Vision, pages 3–16. Springer, Berlin Heidelberg New York, 2005.

    Google Scholar 

  75. M. Welk, G. Steidl, and J. Weickert. Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage, 2007. To appear in: Applied and Computational Harmonic Analysis.

    Google Scholar 

  76. M. Welk, J. Weickert, and G. Steidl. A four-pixel scheme for singular differential equations. In Scale Space and PDE Methods in Computer Vision, volume 3459 of Lecture Notes in Computer Science, pages 585–597, Springer, Berlin, Heidelberg, New York, 2005.

    Google Scholar 

  77. H. White. Parametric statistical estimation using artifical neural networks. In Mathematical perspectives on neural networks, pages 719–775. L. Erlbaum Associates, Hilldale, NJ, 1996.

    Google Scholar 

  78. G. Winkler, V. Aurich, K. Hahn, and A. Martin. Noise reduction in images: Some recent edge-preserving methods. Pattern Recognition and Image Analysis, 9:749–766, 1999.

    Google Scholar 

  79. E. Zeidler, editor. Nonlinear Functional Analysis and Applications I: Fixed-Point Theorems. Springer-Verlag, New York, Inc., New York, NY, USA, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franke, J. et al. (2008). Structural Adaptive Smoothing Procedures. In: Dahlhaus, R., Kurths, J., Maass, P., Timmer, J. (eds) Mathematical Methods in Signal Processing and Digital Image Analysis. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75632-3_6

Download citation

Publish with us

Policies and ethics