Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 80))

Summary

Prototype based rules (P-rules) are an alternative to crisp and fuzzy rules, moreover they can be seen as a generalization of different forms of knowledge representation. In P-rules knowledge is represented as set of reference vectors, that may be derived from the SVM model.

The number of support vectors (SV) should be reduced to a minimal number that still preserves SVM generalization abilities. Several state-of-the-art methods that reduce the number of support vectors are compared with a new approach, taking into consideration possible interpretation of retained support vectors as the basis for P-rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Blachnik. Warunkowe metody rozmytego grupowania w zastosowaniu do uczenia radialnych sieci neuronowych. Master's thesis, Silesian University of Technology, Gliwice, Poland, 2002.

    Google Scholar 

  2. M. Blachnik and W. Duch. Prototype-based threshold rules. Springer Lecture Notes in Computer Science, 4234, 2006.

    Google Scholar 

  3. M. Blachnik, W. Duch, and T. Wieczorek. Selection of prototypes rules - context searching via clustering. Lecture Notes in Artificial Intelligence, 4029:573–582, 2006.

    Google Scholar 

  4. C. Burges. Simplified support vector decision rules. In International Conference on Machine Learning, pages 71–77, 1996.

    Google Scholar 

  5. Y. Chen and J.Z. Wang. Support vector learning for fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems, 11(6):716–728, 2003.

    Article  Google Scholar 

  6. R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research, 1:143–160, 2001.

    Article  MathSciNet  Google Scholar 

  7. T. Downs, K. Gates, and A. Masters. Exact simplification of support vector solutions. The Journal of Machine Learning Research, 2:293–297, 2001.

    Article  Google Scholar 

  8. W. Duch. Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics, 29:937–968, 2000.

    MATH  MathSciNet  Google Scholar 

  9. W. Duch. Coloring black boxes: visualization of neural network decisions. In Int. Joint Conf. on Neural Networks, Portland, Oregon, volume I, pages 1735–1740. IEEE Press, 2003.

    Google Scholar 

  10. W. Duch. Visualization of hidden node activity in neural networks: I. visualization methods. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and L. Zadeh, editors, Lecture Notes in Artificial Intelligence, volume 3070, pages 38–43. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2004.

    Google Scholar 

  11. W. Duch. Visualization of hidden node activity in neural networks: Ii. application to rbf networks. In L. Rutkowski, J. Siekemann, R. Tadeusiewicz, and L. Zadeh, editors, Lecture Notes in Artificial Intelligence, volume 3070, pages 44–49. Physica Verlag, Springer, Berlin, Heidelberg, New York, 2004.

    Google Scholar 

  12. W. Duch, R. Adamczak, and G.H.F. Diercksen. Distance-based multilayer perceptrons. In M. Mohammadian, editor, International Conference on Computational Intelligence for Modelling Control and Automation, pages 75–80, Amsterdam, The Netherlands, 1999. IOS Press.

    Google Scholar 

  13. W. Duch, R. Adamczak, and G.H.F. Diercksen. Classification, association and pattern completion using neural similarity based methods. Applied Mathemathics and Computer Science, 10:101–120, 2000.

    Google Scholar 

  14. W. Duch, R. Adamczak, and K. Grąbczewski. A new methodology of extraction, optimization and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks, 12:277–306, 2001.

    Article  Google Scholar 

  15. W. Duch and M. Blachnik. Fuzzy rule-based systems derived from similarity to prototypes. In N.R. Pal, N. Kasabov, R.K. Mudi, S. Pal, and S.K. Parui, editors, Lecture Notes in Computer Science, volume 3316, pages 912–917. Physica Verlag, Springer, New York, 2004.

    Google Scholar 

  16. W. Duch and G.H.F. Diercksen. Feature space mapping as a universal adaptive system. Computer Physics Communications, 87:341–371, 1995.

    Article  MATH  Google Scholar 

  17. W. Duch and K. Grudziński. Prototype based rules - new way to understand the data. In IEEE International Joint Conference on Neural Networks, pages 1858–1863, Washington D.C, 2001. IEEE Press.

    Google Scholar 

  18. W. Duch and K. Grudziński. Meta-learning via search combined with parameter optimization. In L. Rutkowski and J. Kacprzyk, editors, Advances in Soft Computing, pages 13–22. Physica Verlag, Springer, New York, 2002.

    Google Scholar 

  19. W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for understanding of data. Proceedings of the IEEE, 92(5):771–805, 2004.

    Article  Google Scholar 

  20. J. Lęski. Ordered weighted generalized conditional possibilistic clustering. In J. Chojcan and J. Leskiki, editors, Zbiory rozmyte i ich zastosowania, pages 469–479. Wydawnictwa Politechniki lskiej, Gliwice, 2001.

    Google Scholar 

  21. K. Grąbczewski and W. Duch. Heterogeneous forests of decision trees. Springer Lecture Notes in Computer Science, 2415:504–509, 2002.

    Article  Google Scholar 

  22. M. Grochowski and N. Jankowski. Comparison of instance selection algorithms. ii. results and comments. Lecture Notes in Computer Science, 3070:580–585, 2004.

    Google Scholar 

  23. N. Jankowski and M. Grochowski. Comparison of instance selection algorithms. i. algorithms survey. Lecture Notes in Computer Science, 3070:598–603, 2004.

    Google Scholar 

  24. T. Joachims. Learning to Classify Text Using Support Vector Machines. Kluwer Academic Publisher, 2002.

    Google Scholar 

  25. L.I. Kuncheva and J.C. Bezdek. An integrated framework for generalized nearest prototype classifier design. International Journal of Uncertainty, 6(5):437–457, 1998.

    MATH  Google Scholar 

  26. J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. IEEE Transactions on Neural Networks, 15:408–415, 2003.

    Google Scholar 

  27. K. Lin and C. Lin. A study on reduced support vector machines. IEEE Transactions on Neural Networks, 14(6):1449–1459, 2003.

    Article  Google Scholar 

  28. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases, 1998–2004. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

  29. W. Pedrycz. Conditional fuzzy c-means. Pattern Recognition Letters, 17:625–632, 1996.

    Article  Google Scholar 

  30. W. Pedrycz. Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks, 9(4), 1998.

    Google Scholar 

  31. W. Pedrycz. Fuzzy set technology in knowledge discover. Fuzzy Sets and Systems, 98(3):279–290, 1998.

    Article  Google Scholar 

  32. E. Pękalska and R.P.W. Duin. The dissimilarity representation for pattern recognition: foundations and applications. New Jersey; London: World Scientific, 2005.

    MATH  Google Scholar 

  33. J. Platt. Using sparseness and analytic qp to speed training of support vector machines. Advances in Neural Information Processing Systems, 11, 1999.

    Google Scholar 

  34. I. Roth and V. Bruce. Perception and Representation. Open University Press, 1995. 2nd ed.

    Google Scholar 

  35. B. Schölkopf, P. Knirsch, A. Smola, and C. Burges. Fast approximation of support vector kernel expansions. Informatik Aktuell, Mustererkennung, 1998.

    Google Scholar 

  36. J. Lęski. A new generalized weighted conditional fuzzy clustering. BUSEFAL, 81:8–16, 2000.

    Google Scholar 

  37. T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to model ing and control. IEEE Transactions on Systems, Man, Cybernetics, 15:116–132, 1985.

    MATH  Google Scholar 

  38. J. Weston, A. Elisseeff, G. BakIr, and F. Sinz. The spider. http://www.kyb.tuebingen.mpg.de/bs/people/spider/.

  39. D.R. Wilson and T.R. Martinez. Reduction techniques for instance-based learning algorithms. Machine Learning, 38:257–268, 2000.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blachnik, M., Duch, W. (2008). Prototype Rules from SVM. In: Diederich, J. (eds) Rule Extraction from Support Vector Machines. Studies in Computational Intelligence, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75390-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75390-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75389-6

  • Online ISBN: 978-3-540-75390-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics