Skip to main content

Features

  • Chapter
  • First Online:
Foundations of Rule Learning

Part of the book series: Cognitive Technologies ((COGTECH))

  • 2116 Accesses

Abstract

Rule learning systems use features as the main building blocks for rules. A feature can be a simple attribute-value test or a test for the validity of a complex domain knowledge relationship. Most existing concept learning systems generate features in the rule construction process. In contrast, this chapter shows that the separation of the feature construction and rule construction process has several theoretical and practical advantages. In particular, explicit usage of features enables a unifying framework of both propositional and relational rule learning. We demonstrate procedures for generating a set of simple features that—in domains with no contradictory examples—enable the construction of complete and consistent rule sets, and do not include obviously irrelevant features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of this chapter are based on Lavrač, Fürnkranz, and Gamberger (2010).

  2. 2.

    This can, for example, also be seen from the different definitions ofinformation gain for decision tree learning (Quinlan, 1986) andrule learning (Quinlan, 1990).

  3. 3.

    Lavrač et al. (1999) used the term coverage of pn-pairs instead of pn-pair discrimination.

  4. 4.

    A similar result was first observed by Fayyad and Irani (1992) for discretization of numerical values.

  5. 5.

    One reason for choosing the mean value between two neighboring points of opposite classes is that this point maximizes themargin, i.e., the buffer towards the decision boundary between the two classes.

  6. 6.

    The Nemenyi test (Nemenyi, 1963) is a post hoc test to the Friedman test for rank differences (Friedman, 1937). It computes the length of the critical distance, which is the minimum difference in average rank from which one can conclude statistical significance of the observed average ranks. This is typically visualized in a graph that shows the average ranks of various methods connecting those that are within the same critical distance range. For its use in machine learning we refer to Demšar (2006).

References

  • Bergadano, F., Matwin, S., Michalski, R. S., & Zhang, J. (1992). Learning two-tiered descriptions of flexible concepts: The POSEIDON system. Machine Learning, 8, 5–43.

    Google Scholar 

  • Bruha, I., & Franek, F. (1996). Comparison of various routines for unknown attribute value processing: The covering paradigm. International Journal of Pattern Recognition and Artificial Intelligence, 10(8), 939–955.

    Article  Google Scholar 

  • Cai, Y., Cercone, N., & Han, J. (1991). Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro & W. J. Frawley (Eds.), Knowledge discovery in databases (pp. 213–228). Menlo Park, CA: MIT.

    Google Scholar 

  • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261–283.

    Google Scholar 

  • Cloete, I., & Van Zyl, J. (2006). Fuzzy rule induction in a set covering framework. IEEE Transactions on Fuzzy Systems, 14(1), 93–110.

    Article  Google Scholar 

  • Cohen, W. W. (1995). Fast effective rule induction. In A. Prieditis & S. Russell (Eds.), Proceedings of the 12th International Conference on Machine Learning (ML-95), Lake Tahoe, CA (pp. 115–123). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Cohen, W. W. (1996). Learning trees and rules with set-valued features. In Proceedings of the 13th National Conference on Artificial Intelligene (AAAI-96) (pp. 709–716). Menlo Park, CA: AAAI.

    Google Scholar 

  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    MATH  Google Scholar 

  • Dubois, D., & Prade, H. (1980). Fuzzy sets and systems. New York: Academic.

    MATH  Google Scholar 

  • Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in decision tree generation. Machine Learning, 8(2), 87–102.

    MATH  Google Scholar 

  • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675–701.

    Article  Google Scholar 

  • Gamberger, D., & Lavrač, N. (2002). Expert-guided subgroup discovery: Methodology and application. Journal of Artificial Intelligence Research, 17, 501–527.

    MATH  Google Scholar 

  • Gamberger, D., Lavrač, N., & Fürnkranz, J. (2008). Handling unknown and imprecise attribute values in propositional rule learning: A feature-based approach. In T.-B. Ho & Z.-H. Zhou (Eds.), Proceedings of the 10th Pacific Rim International Conference on Artificial Intelligence (PRICAI-08), Hanoi, Vietnam (pp. 636–645). Berlin, Germany/Heidelberg, Germany: Springer.

    Google Scholar 

  • Gamberger, D., Lavrač, N., Zelezny, F., & Tolar, J. (2004). Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. Journal of Biomedical Informatics, 37(4), 269–284.

    Article  Google Scholar 

  • Han, J., Cai, Y., & Cercone, N. (1992). Knowledge discovery in databases: An attribute-oriented approach. In Proceedings of the 18th Conference on Very Large Data Bases (VLDB-92), Vancouver, BC (pp. 547–559). San Mateo, CA: Morgan Kaufmann Publishers.

    Google Scholar 

  • Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

  • Hühn, J., & Hüllermeier, E. (2009b). Furia: An algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3), 293–319.

    Article  MathSciNet  Google Scholar 

  • Hüllermeier, E. (2011). Fuzzy sets in machine learning and data mining. Applied Soft Computing, 11(2), 1493–1505.

    Article  Google Scholar 

  • Lavrač, N., & Džeroski, S. (1994a). Inductive logic programming: Techniques and applications. New York: Ellis Horwood.

    MATH  Google Scholar 

  • Lavrač, N., Džeroski, S., & Grobelnik, M. (1991). Learning nonrecursive definitions of relations with LINUS. In Proceedings of the 5th European Working Session on Learning (EWSL-91), Porto, Portugal (pp. 265–281). Berlin, Germany: Springer.

    Google Scholar 

  • Lavrač, N., & Flach, P. (2001). An extended transformation approach to inductive logic programming. ACM Transactions on Computational Logic, 2(4), 458–494.

    Article  Google Scholar 

  • Lavrač, N., Fürnkranz, J., & Gamberger, D. (2010). Explicit feature construction and manipulation for covering rule learning algorithms. In J. Koronacki, Z. Ras, S. T. Wierzchon, & J. Kacprzyk (Eds.), advances in machine learning II—Dedicated to the memory of Professor Ryszard S. Michalski (pp. 121–146). Berlin, Germany/Heidelberg, Germany: Springer.

    Google Scholar 

  • Lavrač, N., Gamberger, D., & Jovanoski, V. (1999). A sudy of relevance for learning in deductive databases. The Journal of Logic Programming, 40(2/3), 215–249.

    Article  MATH  Google Scholar 

  • Michalski, R. S. (1973). AQVAL/1—Computer implementation of a variable-valued logic system VL1 and examples of its application to pattern recognition. In Proceedings of the 1st International Joint Conference on Pattern Recognition, Washington, DC (pp. 3–17). Northridge, CA: IEEE

    Google Scholar 

  • Michalski, R. S. (1980). Pattern recognition and rule-guided inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 349–361.

    Article  MATH  Google Scholar 

  • Michalski, R. S., Mozetič, I., Hong, J., & Lavrač, N. (1986). The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Proceedings of the 5th National Conference on Artificial Intelligence (AAAI-86), Philadelphia (pp. 1041–1045). Menlo Park, CA: AAAI.

    Google Scholar 

  • Nemenyi, P. (1963). Distribution-free multiple comparisons. Ph.D. thesis, Princeton University.

    Google Scholar 

  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

    Google Scholar 

  • Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.

    Google Scholar 

  • Theron, H., & Cloete, I. (1996). BEXA: A covering algorithm for learning propositional concept descriptions. Machine Learning, 24, 5–40.

    Google Scholar 

  • Wohlrab, L., & Fürnkranz, J. (2011). A review and comparison of strategies for handling missing values in separate-and-conquer rule learning. Journal of Intelligent Information Systems, 36(1), 73–98.

    Article  Google Scholar 

  • Yang, Y., Webb, G. I., & Wu, X. (2005). Discretization methods. In O. Maimon & L. Rokach (Eds.), The data mining and knowledge discovery handbook (pp. 113–130). New York: Springer.

    Chapter  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fürnkranz, J., Gamberger, D., Lavrač, N. (2012). Features. In: Foundations of Rule Learning. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75197-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75197-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75196-0

  • Online ISBN: 978-3-540-75197-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics