Skip to main content

Simulation Model for Functionalized Vesicles: Lipid-Peptide Integration in Minimal Protocells

  • Conference paper
Advances in Artificial Life (ECAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4648))

Included in the following conference series:

Abstract

A recently developed and presented stochastic simulation platform (‘ENVIRONMENT’ [12, 25]), which extends Gillespie’s algorithm for chemically reacting, fixed-volume, homogeneous systems to volume-changing and globally heterogeneous conditions, is applied to investigate the dynamic behaviour of self-(re-)producing vesicles whose membrane consists of both lipids and small peptides. We claim that it is through the integration of these two types of relatively simple –and prebiotically plausible– components that protocells could start their development into functional supramolecular structures, allowing the formation of increasingly complex reaction networks in their internal aqueous milieu. The model is not spatially explicit, but takes into account quite realistically volume-surface constraints, osmotic pressure, diffusion/transport processes, structural elasticity ... In this framework the time evolution of non-equilibrium proto-metabolic cellular systems is studied, paying special attention to the capacity of the system to get rid of its waste material, which proved critical for balanced cell growth (avoiding the risk of an osmotic burst). We also investigate the effects of including an explicit feedback mechanism in the system: the case in which waste transport mediated by peptide chains takes place only under osmotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Csendes, T.: A simulation study on the chemoton. Kybernetes 13, 79–85 (1984)

    Google Scholar 

  2. Dyson, F.: A model for the origin of life. J. Molec. Evol. 18, 344–350 (1982)

    Article  Google Scholar 

  3. Fernando, C., Di Paolo, E.: The chemoton: a model for the origin of long RNA templates. In: Pollack, J., et al. (eds.) Proceedings of Artificial Life IX, pp. 1–8. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Ganti, T.: On the early evolutionary origin of biological periodicity. Cell Biol. Int. 26, 729–735 (2002)

    Article  Google Scholar 

  5. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  6. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 81, 2340–2369 (1977)

    Article  Google Scholar 

  7. Luisi, P.L.: The Emergence of Life. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  8. Macía, J., Solé, R.V.: Protocell self-reproduction in a spatially explicit metabolism-vesicle system. J. Theor. Biol. 245(3), 400–410 (2007)

    Article  Google Scholar 

  9. Madina, D., Ono, N., Ikegami, T.: Cellular Evolution in a 3D Lattice Artificial Chemistry. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 59–68. Springer, Heidelberg (2003)

    Google Scholar 

  10. Mavelli, F.: Theoretical investigations on autopoietic replication mechanisms. Ph.D. Dissertation (Nr. 15218), ETH-Zürich (2003)

    Google Scholar 

  11. Mavelli, F., Piotto, S.: Stochastic Simulations of Homogeneous Chemically Reacting Systems. J. Mol. Struct.: THEOCHEM 771, 55–64 (2006)

    Article  Google Scholar 

  12. Mavelli, F., Ruiz-Mirazo, K.: Stochastic simulations of minimal self-reproducing cellular systems. In: Solé et al. (eds.), Philosophical Transactions Royal Society of London B, Special Issue ‘Towards the artificial Cell’ (in press, available online)

    Google Scholar 

  13. Mavelli, F., Ruiz-Mirazo, K.: An object-oriented programming platform to simulate stochastically reaction networks in complex (heterogeneous) environments (forthcoming)

    Google Scholar 

  14. McMullin, B., Varela, F.: Rediscovering Computational Autopoiesis. In: Husbands, P., Harvey, I. (eds.) Fourth European Conference on Artificial Life, pp. 38–47. MIT Press, Cambridge (1997)

    Google Scholar 

  15. Miller, S.L.: A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953)

    Article  Google Scholar 

  16. Morowitz, H.J., Heinz, B., Deamer, D.W.: The chemical logic of a minimum protocell. Origs. Life. Evol. Bios. 18, 281–287 (1988)

    Article  Google Scholar 

  17. Munteanu, A., Solé, R.V.: Phenotypic diversity and chaos in a minimal cell model. J. Theor. Biol. 240, 434–442 (2006)

    Article  Google Scholar 

  18. Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA 101, 17669–17674 (2004)

    Article  Google Scholar 

  19. Nooner, D.W., Oró, J.: Synthesis of fatty acids by a closed system Fischer-Tropsch process. Division of Pretoleum Chemistry, American Chemical Society 23, 624–631 (1978)

    Google Scholar 

  20. Oliver, A.E., Deamer, D.W.: Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers. Biophys J. 66(5), 1364–1379 (1994)

    Article  Google Scholar 

  21. Ono, N., Ikegami, T.: Model of self-replicating cell capable of self-maintenance. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 399–406. Springer, Heidelberg (1999)

    Google Scholar 

  22. Pohorille, A., Schweighofer, K., Wilson, M.A.: The origin and early evolution of membrane channels. Astrobiology 5(1), 1–17 (2005)

    Article  Google Scholar 

  23. Rasmussen, S., et al.: Transition from non-living to living matter. Science 303, 963 (2004)

    Article  Google Scholar 

  24. Ruiz-Mirazo, K., Moreno, A.: Basic autonomy as a fundamental step in the synthesis of life. Artificial Life 10(3), 235–259 (2004)

    Article  Google Scholar 

  25. Ruiz-Mirazo, K., Mavelli, F.: On the way towards ‘basic autonomous agents’: stochastic simulations of minimal lipid-peptide cells. BioSystems (accepted)

    Google Scholar 

  26. Segré, D., Lancet, D.: Composing Life. EMBO Rep. 1(3), 217 (2000)

    Article  Google Scholar 

  27. Varela, F.J., Maturana, H., Uribe, R.: Autopoiesis: The Organization of Living Systems, its characterization and a model. BioSystems 5, 187–196 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Almeida e Costa Luis Mateus Rocha Ernesto Costa Inman Harvey António Coutinho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruiz-Mirazo, K., Mavelli, F. (2007). Simulation Model for Functionalized Vesicles: Lipid-Peptide Integration in Minimal Protocells. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds) Advances in Artificial Life. ECAL 2007. Lecture Notes in Computer Science(), vol 4648. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74913-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74913-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74912-7

  • Online ISBN: 978-3-540-74913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics